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Abstract: There is significant heterogeneity in pain outcomes following motor vehicle crashes
(MVGs), such that a sizeable portion of individuals develop symptoms of chronic pain months after
injury while others recover. Despite variable outcomes, the pathogenesis of chronic pain is currently
unclear. Previous neuroimaging work implicates the dorsal anterior cingulate cortex (dACC) in adap-
tive control of pain, while prior resting state functional magnetic resonance imaging studies find
increased functional connectivity (FC) between the dACC and regions involved in pain processing in
those with chronic pain. Hyper-connectivity of the dACC to regions that mediate pain response may
therefore relate to pain severity. The present study completed rsfMRI scans on N =22 survivors of
MVCs collected within 2 weeks of the incident to test whole-brain dACC-FC as a predictor of pain
severity 6 months later. At 2 weeks, pain symptoms were predicted by positive connectivity between
the dACC and the premotor cortex. Controlling for pain symptoms at 2 weeks, pain symptoms at 6
months were predicted by negative connectivity between the dACC and the precuneus. Previous
research implicates the precuneus in the individual subjective awareness of pain. Given a relatively
small sample size, approximately half of which did not experience chronic pain at 6 months, findings
warrant replication. Nevertheless, this study provides preliminary evidence of enhanced dACC con-
nectivity with motor regions and decreased connectivity with pain processing regions as immediate
and prospective predictors of pain following MVC.

Perspective: This article presents evidence of distinct neural vulnerabilities that predict chronic
pain in MVC survivors based on whole-brain connectivity with the dorsal anterior cingulate cortex.
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otor vehicle crashes (MVCs) are a leading
M cause of traumatic injuries in the United

States—second only to falls—and account for
over 20% of all severe injuries that require hospital
care.”’ While a host of negative outcomes accompany
MVGs, chief among these is the experience of severe
pain symptoms, which affect up to 80% of MVC survi-
vors immediately after injury.’ In terms of the long-term
prognosis of pain outcomes, there is considerable vari-
ability. Large-scale and population-based studies dem-
onstrate that anywhere from 12 to 40% of MVC
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survivors continue to suffer from pain months after
injury.*”>” As pain symptoms become chronic, defined
as pain that is maintained at least 6 months after injury,
risk for diminished quality of life and psychiatric illness
increases.>>* Therefore, deciphering who is at risk for
the emergence of chronic pain after injury provides an
opportunity to intervene and positively affect overall
health of MVC survivors. Currently, however, relatively
little is known about what factors moderate the rela-
tionship between MVC-related injury and the develop-
ment of chronic pain, demonstrating a need for more
research to precisely elucidate which factors predict het-
erogeneity of pain outcomes in this population.’®

Neurobiologically, the acute experience of pain
involves activation in numerous discrete brain regions.®?
During injury, pain signals are sent from the periphery
to the brain by way of the spinal cord and brainstem,
which subsequently transmit these signals to the thala-
mus.® This information is then sent to the somatosen-
sory cortex, involved in deciphering the location and
intensity of incoming pain signals.”'*>° The amygdala
and insula, which are involved in salience detection,
processing, and experience of emotion,>®°3°8 are also
active and contribute to overall pain processing.**”?

In addition to these regions, which are principally
involved in the appraisal of pain as a salient event,> the
spinothalamic system directly innervates higher cortical
regions to manage and control the pain response, with a
chief target being the dorsal anterior cingulate cortex
(dACQ).**7? The dACC receives direct’?® and indirect'%*%74
connections from the brainstem, in addition to possessing
a bilateral connection with the amygdala.>*¢"%®8" Based
on this organization and in the context of acute pain
response, the dACC has been identified as a critical region
involved in integrating incoming signals governing the
perception of pain (eg, originating from the periphery by
way of the brainstem) with those involved in salience
detection and the generation of negative affect (eg, origi-
nating from the amygdala).>*’>”’ Given the dACC's
broader role in response inhibition and action plan-
ning,'>?” the principal role of the dACC in response to
pain is believed to center on integrating pain and affective
signals in order to mediate adaptive control of this experi-
ence.”” This is supported by evidence from primate studies
showing that the dACC is active in response to pain as well
as when animals are fleeing from pain.*"***°° This suggests
a role for the dACC in mediating the motivational
response to pain. Humans with lesions in the cingulate cor-
tex report reduced affective responses to pain without
altering their perception of incoming pain signals, further
suggesting that the dACC is involved in affective response
to pain.*’ Evidence from functional magnetic resonance
imaging (fMRI) studies in healthy volunteers also shows
that perceived controllability of feeling pain tracks linearly
with dACC engagement when pain is administered.”® In
the context of pain outcomes following MVCs, engage-
ment of the dACC may therefore influence long-term pain
prognosis given its role in pain regulation.

Indeed, there is evidence of altered dACC involve-
ment in chronic pain based on data from cross-sectional
fMRI studies examining dACC activation in individuals
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with fibromyalgia and chronic low back pain. Individu-
als with these conditions exhibit greater activation of
the dACC during nociceptive processing.'®3>°¢ Aug-
mented engagement of the dACC during pain process-
ing may compensate for greater anticipation and
attention toward pain,'® as evidenced by the fact that
dACC activation positively relates to greater subjective
ratings of pain in these samples®® and symptoms of pain
catastrophizing—or characterizing pain as awful, horri-
ble and unbearable.?” As pain processing involves many
brain regions, functional connectivity (FC) studies have
been useful for understanding alterations within larger
networks, with specific focus on altered spontaneous
low-frequency (<0.1 Hz) fluctuations between regions
at rest. This work also demonstrates altered connectivity
between the ACC and pain processing regions in those
with chronic pain. For instance, Cifre et al found greater
FC between the ACC and insula, and reduced ACC-
amygdala and ACC-brainstem FC in those with fibromy-
algia compared to healthy controls."”” Enhanced ACC-
insula connectivity may reflect greater interoceptive
awareness of pain, while decreased ACC-amygdala and
ACC-brainstem connectivity may represent abnormal
bottom-up signaling of pain sensations and/or reduced
descending modulation of pain.'” Conversely, decreased
FC between the insula and dACC is associated with
greater reduction of pain symptoms when patients with
fibromyalgia were administered milnacipran, a selective
serotonin and norepinephrine reuptake inhibitor for
their pain symptoms.”’ Together, this work demon-
strates that greater FC between the dACC and pain proc-
essing regions (eg, insula, thalamus, brainstem)
characterizes chronic pain response, but that this FC is
reversed when pain symptoms are treated. Based on this
work, functional neurocircuitry between the dACC and
brain regions involved in acute pain processing may be
related to long-term pain outcomes; however, we are
unaware of a study that has examined dACC-FC as a pre-
dictor of prospective pain severity following MVCs.

The current study tested whole-brain dACC-FC as a
predictor of chronic pain symptoms assessed 6 months
after a MVC. Pain ratings and rsfMRI were collected in-
person acutely (eg, within 2 weeks of the MVC) and
pain ratings were collected again in-person 6 months
later at a follow-up visit. We hypothesized that pain rat-
ings across the 2 timepoints would be positively related
to one another. In addition and based on prior neuroim-
aging work, we hypothesized that baseline measures of
rsfMRI, specifically positive connectivity of the dACC
with regions involved in acute pain processing (eg, the
brainstem, thalamus, somatosensory cortex, amygdala,
and insula) would predict greater pain symptoms at
baseline and prospectively predict greater pain symp-
toms at 6 months.

Methods

Participants and Procedures

Participants were recruited from the emergency
department of the Level 1 trauma center at Froedtert
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Hospital/Medical College of Wisconsin in Milwaukee,
Wisconsin. Participants were not admitted to long-term
hospital care but were discharged following completion
of acute care within the emergency department (ED).
Inclusion criteria included: 1) MVC as mechanism of
injury, 2) between the ages of 18 and 65, 3) ability to
read and write English, and 4) ability to give informed
consent. Participants were excluded if they had a head
injury that resulted in loss of consciousness (Glasgow
Coma Scale score <13 on ED arrival). Additional exclu-
sion criteria specific to fMRI scanning included: 1) pres-
ence of ferromagnetic material within the body, 2)
pregnancy or actively trying to become pregnant, 3)
fear of enclosed spaces (eg, claustrophobia), and 4)
inability to lie still for up to 1 hour. Participants were
recruited over the phone from an ED discharge census
and provided consent for participation when they
arrived for rsfMRI testing and self-report scales 2 weeks
after injury at a baseline appointment; self-report scales
were again collected in-person 6 months later at follow-
up. The Institutional Review Board at the Medical Col-
lege of Wisconsin approved all study procedures and
participants were monetarily compensated for their
time.

Self-Report Measures and Analysis

Participants completed a self-report index of pain at
both baseline and 6-month visits using the Visual Ana-
log Scale for Pain (VAS Pain),’® a reliable and valid
measurement for the reporting of unidimensional
pain®??? and that has been used as a primary outcome
measure of recurrent pain.'® Upon presentation of the
VAS Pain, participants were asked to rate how much
pain they were currently experiencing on a continuous
scale of 0 to 10 (0 =no pain, 10 =worst pain). In addi-
tion to the VAS Pain, all participants also completed a
self-report rating of post-traumatic stress symptoms at
both visits using the Impact of Events Scale-Revised
(IES-R),”® given high comorbidity between pain symp-
toms and post-traumatic stress disorder (PTSD).” The
IES-R asks participants to rate how distressed they feel
by common posttraumatic stress symptoms. In addition
to clinical measures, participants were also asked
about medications they were taken at the time of the
fMRI assessment to determine opioid use for pain
management
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rsfMRI Acquisition, Preprocessing, and
Analysis

All participants completed a 6-minute resting state
scan during fMRI (eg, rsfMRI) at their baseline appoint-
ment approximately 2 weeks after injury. During the
scan, participants viewed a white crosshair displayed on
a black background and were instructed to keep their
eyes open. Scanning was performed on a 3.0 Tesla short
bore GE Signa Excite MRI system at the Medical College
of Wisconsin. Functional T2*-weighted echoplanar
images were collected in a sagittal orientation with the
following parameters: repetition time (TR)/echo time
(TE) =2,000/25 ms; FOV =24 mm; matrix =64 x 64; flip
angle =77°; slice thickness=3.5 mm. A high-resolution
T1-weighted anatomical image was also acquired for
co-registration with the following parameters: TR/
TE=8.2/3.2 ms; FOV =240 mm; matrix =256 x 224; flip
angle = 12°; voxel size =0.9375 x 0.9375 x 1 mm.

Individual functional images were analyzed using the
CONN functional connectivity toolbox’® and images
were preprocessed according to standard procedures.
Briefly, images underwent spatial realignment, slice-
time correction, structural segmentation and normaliza-
tion, and motion correction. As small head movements
can cause spurious noise and distance-dependent
changes in signal correlations,®#°> frame-wise displace-
ment (FD) was computed to rule out confounding
effects of motion. Volumes with FD >0.2 mm (plus 1-
back and 2-forward neighboring volumes) were
“scrubbed” (eg, removed from analysis) and subjects
with >3 mm or 3 degrees of rotational cumulative
movement were dropped from analysis. Images were
normalized to the Montreal Neurological Institute
(MNI) template and smoothed with a 4 mm? Gaussian
kernel. To isolate rsfMRI signal, resulting data were
bandpass filtered at 0.01 to 0.10 Hz, while signal from
cerebrospinal fluid and white matter along with motion
realignment parameters were entered as regressors of
no-interest to control for these effects during scanning.

For whole-brain dACC-seeded analyses, an anatomical
dACC mask was created from the ACC mask in the AAL
atlas.”>’® This ACC mask was edited using fslview (FSL
v.5.0.9%°) to exclude rostral ACC, such that ACC at and
below the genu of the corpus callosum was excluded in-
line with dACC versus rostral ACC boundaries.”” Fig 1
illustrates spatial location of the dACC mask used as the
seed region.

Figure 1. Dorsal anterior cingulate cortex mask.
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We first examined the relationship between dACC
whole-brain FC and pain symptoms at baseline, con-
trolling for age, gender, opioid administration at
baseline (dichotomous variable), and time since injury
for the baseline appointment. Second, we examined
the relationship between dACC whole-brain FC and
pain symptoms at 6 months, controlling for these
same covariates in addition to pain symptoms at base-
line and PTSD symptom severity at 6 months (eg, IES-
R) given high comorbidity between the development
of chronic pain and PTSD.?*¢%7°> Age and gender cova-
riates were included given wide range in age distribu-
tion and unequal gender distribution. Significant
effects were examined using a height threshold of P <
.001 (uncorrected) and cluster threshold of P < .05 cor-
rected for multiple comparisons across the entire
brain based on a false discovery rate in-line with
recent recommendations®®®*%% and identical to other
published methods.?%%%*® To illustrate effects, con-
nectivity values were extracted from significant clus-
ters and input into SPSS (Version 25.0).

Results

Participants

Based on inclusion/exclusion criteria, a total of 22 par-
ticipants consented to and were included in the study.
Participants were between the ages of 18 and 62
(M=31.82, SD=11.28); n=17 participants were female
(77%). In terms of race and ethnicity, n=11 (50%) were
Caucasian, n =8 (36%) African-American, n =2 (9%) His-
panic, and n=1 (5%) unknown. As a result of the MVC,
12/22 (54.55%) experienced injuries involving more
than one area on the body, while the location of injuries
included the back (12/22; 54.55%), neck (9/22; 40.91%),
head (4/22; 18.18%), arms (3/22; 13.64%), hips (2/22;
9.09%), legs (2/22; 9.09%), chest (1/22; 4.55%), and
abdomen (1/22; 4.55%). In terms of concomitant condi-
tions, at the time of admittance into the ED, 16/22
(72.73%) had no current medical conditions, 3/22
(13.64%) had asthma, 1/22 (4.55%) had high choles-
terol, 1/22 (4.55%) had hypertension, and 1/22 (4.55%)
had anemia. No participants had a history of chronic
pain prior to the injury.

At baseline, participants were asked to rate the sever-
ity of their pain associated with the injuries sustained
during the MVC. Pain ratings ranged from 0 to 5.50
(M =2.57, SD =1.83) at baseline, and 0 to 7.00 (M = 1.34,
SD = 1.80) at 6 months. The number of participants who
reported pain 6 months after injury was 12/22 (54.55%)
as qualified by a pain rating >0, indicating presence of
pain. A total of 7/22 (31.82%) participants reported
either identical pain severity compared to baseline or an
increase in pain severity at 6 months. Pain ratings at
baseline were positively correlated to pain ratings at 6
months (r(20)=0.44, P=.04). A total of 6 participants
(27%) were taking opioids at baseline for pain manage-
ment.

As time since injury may affect pain severity ratings,
we also assessed the correlation between time since
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injury for both baseline and 6-month appointments and
pain severity ratings. Two time since injury measures
were calculated using difference scores reflecting: 1)
baseline data collection date—date of injury, and 2) 6-
month data collection date—date of injury. Time since
injury for baseline assessments averaged 13.64 =+
2.87 days, and time since injury for the 6-month assess-
ments averaged 202.30 £+ 17.97 days. There was a trend-
ing relationship between time since injury at the
baseline assessment and pain severity ratings at that
time (r(20)=0.41, P=0.06), although time since injury
for 6-month assessments and pain severity ratings at 6
months were not associated with one another (r
(20) = —0.04, P=.87).

Symptoms of PTSD ranged from 0.58 to 8.08 (M =4.47,
SD =2.15) at baseline to 0 to 9.75 (M =2.50, SD =2.61) at
6 months. Severity of pain and PTSD symptoms were not
related at either baseline (r(20)=0.15, P=.52) or 6
months (r(20) =0.39, P=.07).

rsfMRI Predictors of Pain at Baseline

Pain symptoms at baseline were predicted by positive
connectivity between the dACC and a cluster traversing
the precentral gyrus/primary motor cortex (M1) and pre-
motor cortex (peak MNI: 30, —14, 70; Z=7.45; vol-
ume=1,440 mm3 P=.004 false discovery rate-
corrected). Spatial location of significant FC cluster in
the precentral gyrus is displayed in Fig 2A.

rsfMRI Predictors of Pain at 6 Months

Pain symptoms at 6 months were predicted by nega-
tive connectivity between the dACC and the precuneus
(peak MNI: —6, —74, 32; Z=5.25; volume =1,272 mm?3;
P=.004 corrected). Spatial location of significant FC
cluster in the precuneus is displayed in Fig 2B.

Discussion

The present study tested resting state FC of the dACC
as a predictor of pain severity 6 months following a
MVC. Several important findings emerged from this
investigation: first, pain severity at baseline was pre-
dicted by positive connectivity between the dACC and
precentral gyrus, while pain severity at 6 months was
predicted by negative connectivity between the dACC
and the precuneus. Although pain symptoms were posi-
tively related to pain symptoms 6 months later, neural
predictors were significant after controlling for severity
of symptoms at baseline. In effect, results demonstrate
that dACC FC is a robust neural predictor of pain out-
comes 6 months after injuries associated with MVC.

The findings that positive connectivity between the
dACC and the precentral gyrus/primary motor cortex
(M1) predicted greater pain severity are consistent with
prior literature. For instance, altered stimulation of the
M1 in individuals with chronic pain has been widely
reported on, related to altered compensatory move-
ments that develop based on injuries.’ As pain severity
at the baseline timepoint was associated with positive
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Figure 2. (A) Greater pain severity at baseline is associated with increased functional connectivity between the dACC and precen-
tral gyrus/premotor cortex (peak MNI coordinate: 30, —14, 70). (B) Greater pain severity at 6 months is associated with decreased

functional connectivity between the dACC and precuneus (peak MNI coordinate: —6,

—74, 32). Display threshold is P < .001 whole-

brain uncorrected (cluster P < .05 false discovery rate-corrected). All effects control for opioid use at baseline, time since injury at
baseline, age, and gender. Effects at 6 months additionally control for pain symptoms at baseline and PTSD symptoms at 6 months.
dACC, dorsal anterior cingulate cortex; MNI, Montreal Neurological Institute; PTSD, post-traumatic stress disorder.

connectivity between the dACC and M1, this suggests
that movement dysfunction, mediated by the M1, may
play a greater role in disrupted pain modulation
acutely.

We also found that negative FC between the dACC
and precuneus predicted greater pain severity 6 months
after injury. The precuneus is one of the major “hubs”
of the default mode network (DMN), defined as corre-
lated activation between the medial prefrontal cortex,
posterior cingulate cortex, and precuneus at rest. Thus,
effects specific to the precuneus is unsurprising given
the reliance on a resting state paradigm in our design.
Increased engagement of the DMN is related to self-ref-
erential thinking, planning, and monitoring of internal
and external states outside of cognitive or affective
demand."" The precuneus in particular is associated
with consolidating information during rest and the
forming of cohesive mental representations.’® Activa-
tion of the precuneus diminishes during unconscious
states’® and during the switch from rest to externally
focused tasks.>’

While not traditionally associated with pain process-
ing,”® the precuneus mediates individual differences in
pain sensations, or reported conscious experience of
pain.?® In healthy individuals, the experience of pain in

the laboratory through the use of controlled thermal
heat results in robust engagement of pre-established
pain regions, specifically the somatosensory cortex,
ACC, and insula.>® However, in these same individuals,
subjective report in feeling this pain correlates positively
with engagement of the precuneus only (ie, as opposed
to other pain-centric regions).>® Other work supports a
role for the precuneus in tracking individual differences
in pain ratings, but reports opposing effects, such that
greater pain sensitivity is related to dis-engagement of
the precuneus.”’ This latter study also demonstrates
that greater sensitivity to pain corresponds positively to
engagement of the dACC while simultaneously corre-
sponding to disengagement of the precuneus,’’ sug-
gesting that these brain regions may be part of a
functional network. In contrast, there is little evidence
that the precuneus is active during pain when percep-
tion of pain is not taken into account,®® while there is
further evidence that later processing of pain (vs early
processing of pain on the order of milliseconds) corre-
sponds to increased precuneus activation.?® Thus, the
unfolding of the perception of pain over time as it
moves from unconscious to conscious awareness may be
moderated by precuneus involvement. The role of the
precuneus in information integration and “co-
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perception,” or the integration of our internal and
external selves, thus provides the best explanation for
the involvement of the precuneus in mediating the
internal perception of pain.'*®

This theory with respect to the role of the precuneus
in pain processing is further supported by prior research
involving those with chronic pain. Patients with chronic
pain have increased functional connectivity between
the precuneus and thalamus*? and precuneus and sen-
sorimotor cortex,® but decreased connectivity between
the precuneus and insula.® Other studies find increased
overall DMN connectivity (including the precuneus)
with the thalamus in those with chronic pain,®' suggest-
ing overall strengthening of connections between pain
processing and self-referential thinking. Enhanced
MPFC-precuneus connectivity and MPFC-thalamic con-
nectivity is directly associated with pain rumination in
some of this work,”" suggesting that precuneus connec-
tivity may be associated with integrating pain into a cur-
rent state of mind. Finally, other studies have found that
patients with chronic pain over-engage the precuneus
within the larger DMN, perhaps showing greater reli-
ance on this region during times of rest related to the
integration of pain states.” Limited neuroimaging longi-
tudinal studies involving those with chronic pain have
been done, although findings from this work also impli-
cate the precuneus. Individuals who experience persis-
tent chronic pain over 1 year exhibit decreased
connectivity between the insula and precuneus.’ In the
present study, variability in the functional connection
between the dACC and precuneus was a reliable marker
of individual differences in future pain, furthering the
role of the precuneus in the perception of pain. Weak-
ened correlation between brain regions that regulate
pain (ie, dACC) and those associated with the internal
perception of pain (ie, precuneus) may therefore pro-
vide a “neuro-profile” of persistent perception of pain.

Contrary to hypotheses, we did not find evidence that
dACC-FC with other brain regions involved in pain proc-
essing—specifically the brainstem, thalamus, somato-
sensory cortex, amygdala, and insula—predicted pain
severity 6 months after injury. Although these regions
are involved in the acute processing of pain, FC between
the dACC and these regions was not a useful predictor
of chronic pain symptoms. The current analysis con-
trolled for symptoms of PTSD, a disorder associated with
affective disturbances involving atypical insula and
amygdala engagement.?%®’ That is, regions involved in
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