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Emotion Dysregulation Following Trauma: Shared
Neurocircuitry of Traumatic Brain Injury
and Trauma-Related Psychiatric Disorders
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ABSTRACT
The psychological trauma associated with events resulting in traumatic brain injury (TBI) is an important and
frequently overlooked factor that may impede brain recovery and worsen mental health following TBI. Indeed, in-
dividuals with comorbid posttraumatic stress disorder (PTSD) and TBI have significantly poorer clinical outcomes
than individuals with a sole diagnosis. Emotion dysregulation is a common factor leading to poor cognitive and af-
fective outcomes following TBI. Here, we synthesize how acute postinjury molecular processes stemming from either
physical or emotional trauma may adversely impact circuitry subserving emotion regulation and ultimately yield long-
term system-level functional and structural changes that are common to TBI and PTSD. In the immediate aftermath of
traumatic injury, glucocorticoids stimulate excess glutamatergic activity, particularly in prefrontal cortex-subcortical
circuitry implicated in emotion regulation. In human neuroimaging work, assessing this same circuitry well after the
acute injury, TBI and PTSD show similar impacts on prefrontal and subcortical connectivity and activation. These
neural profiles indicate that emotion regulation may be a useful target for treatment and early intervention to prevent
the adverse sequelae of TBI. Ultimately, the success of future TBI and PTSD early interventions depends on the fields’
ability to address both the physical and emotional impact of physical injury.

https://doi.org/10.1016/j.biopsych.2021.07.023
THE MENTAL HEALTH CONSEQUENCES
OF TRAUMATIC INJURIES

Each year, more than 50 million people worldwide experience
a traumatic brain injury (TBI) (1,2). There is significant overlap in
postinjury outcomes that result from the physical damage of
TBI (e.g., white matter degradation, neuronal loss, neuro-
inflammation), the emotional response to the trauma, and the
distress related to both physical and psychological symptoms
of the TBI and injury event. This combination of physical and
emotional trauma increases risk for both acute concussion and
stress symptoms as well as the development of persistent
postconcussion syndrome (PCS). Both physical and emotional
trauma are associated with multiple chronic psychiatric con-
ditions, including posttraumatic stress disorder (PTSD), major
depressive disorder, general anxiety disorder, and substance
use disorder (3–6). Regardless of previous psychiatric history,
there is a markedly increased risk of psychiatric disorders after
TBI (7), although previous psychiatric history has been shown
to exacerbate psychological symptoms after physical trauma
(8–10). One possibility for this heightened risk of psychiatric
conditions and associated cognitive, behavioral, and affective
outcomes is the presence of acute and chronic emotion dys-
regulation resulting from physical and/or emotional trauma
following traumatic injury.

PTSD is of particular interest after injury because rates of
PTSD are high, ranging from 8% to 40% depending on
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mechanism of injury (3). However, prevalence of comorbid
PTSD and TBI is more difficult to estimate owing to numerous
factors including, but not limited to, different sample types
(civilian vs. military) and sizes, differences in mechanism of
injury, and methodological differences in obtaining PTSD and
TBI history. Still, a recent 2020 meta-analysis that combined
military and civilian samples reported that 27% of those with
TBI also met the criteria for PTSD, compared with only 11%
without TBI who met the criteria for PTSD (11). Furthermore,
the relative risk for PTSD following TBI for civilians and military
samples was 1.2 and 4.8, respectively (11). A 2014 review
further noted that prevalence of comorbid PTSD and TBI
varied according to severity of TBI, with estimates ranging
from 3% to 30% for civilian samples and 12% to 89% in
military samples, where rates increased with severity of TBI
(12). PCS can occur in addition to PTSD, with an estimated
half of mild TBI cases also presenting with PCS symptoms
(13). Up to 25% of individuals with TBI show persistent PCS
symptoms 3 months after injury (i.e., chronic PCS) (14).
Importantly, these prevalence estimates, regardless of sample
or TBI severity, are significantly higher than the prevalence of
PTSD in the general population (w9%) (11), suggesting a
shared pathophysiology leading to common symptoms in
PTSD and TBI.

Critically, posttraumatic stress symptoms in the acute
postinjury window, or symptoms of acute stress disorder
(ASD), have been found to be important markers of risk for
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not only nonremitting PTSD (15) but also chronic PCS. For
those who experience a traumatic injury, ASD is more likely to
occur alongside a mild TBI (mTBI) diagnosis (16). The presence
of ASD following TBI also predicts greater severity of chronic
PCS (8,10). Moreover, the relationship between PTSD and PCS
symptoms becomes stronger as time since injury passes (10).
The similarity in rates of PCS and PTSD after TBI is not sur-
prising given the overlap in emotion-related symptoms,
particularly hyperarousal (15,17). These findings suggest that
acute injury- and stress-driven outcomes contribute to the
emotion dysregulation that confers risk for chronic PTSD and
PCS following TBI. In fact, this suggests that there are com-
mon neurobiological pathways underlying the regulation of
emotions impacted by both the physical and/or psychological
aspects of traumatic injury.

While the physical damage from TBI leads to an established
array of symptoms (e.g., dizziness, confusion, memory im-
pairments, irritability, fatigue, difficulty concentrating), the
emotional reactivity to a traumatic event, whether ASD or
general anxiety, can mimic many of the same symptoms (e.g.,
difficulty breathing, headache, stomach pain, nausea) (18,19).
Therefore, it is difficult to disentangle the specific effects of the
physical trauma of the head injury from the psychological
consequences of the injury event (18). However, the combi-
nation of PTSD and TBI appears more impactful or more
deleterious than the effects of PTSD or TBI alone. Still, it re-
mains unclear whether coexisting PTSD and TBI (this comor-
bidity is subsequently referred to as PTSD1TBI) produces an
additive or multiplicative effect of dysregulation on shared
emotion regulation neurocircuitry. Unpacking the neural effects
and concurrent behavior of PTSD1TBI is of great clinical
importance. Studies on clinical outcomes suggest that a co-
morbid diagnosis of PTSD1TBI worsens outcomes
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significantly more than the outcomes associated with a single
diagnosis (20). For example, veterans diagnosed with
PTSD1TBI are at an elevated risk of suicidality compared with
veterans with PTSD only (21,22). The impact of PTSD1TBI is
also evident when examining the rates of PCS; those with
PTSD have greater PCS symptoms after experiencing an mTBI
than those without PTSD (23).

In service of understanding co-occurring and interactive
post-TBI outcomes, we review evidence that the shared as-
pects of persistent cognitive and affective effects in PTSD
and TBI arise from molecular changes within emotion regu-
lation circuits. We focus on both injured military personnel
and civilians, particularly for non–sports-related traumatic
injury. In both of these populations, the prevalence of PTSD
and severity of symptoms suggests that the long-term
structural and functional neural effect of PTSD1TBI is
greater than the effect of either of these diagnoses alone.
Indeed, similarities in symptoms of TBI and PTSD may be the
result of overlapping disruption at the neural level of emotion
regulation networks (12). Finally, we highlight the need to
incorporate assessment of emotion dysregulation alongside
evaluation of TBI-specific symptoms.
POSTTRAUMA EMOTION DYSREGULATION:
A COMMON FRAMEWORK

Although reactions to traumatic injury vary across individuals,
emotional responses can range from confusion, sadness, and
anxiety to dissociation, depression, and blunted affect (19).
One framework shared by research on TBI and trauma-related
mental health outcomes involves the role of emotion regulation
and the aberrations in brain regions critical for emotion regu-
lation (Figure 1). Emotion regulation broadly refers to complex
Figure 1. An overview of emotion dysregulation in
posttraumatic stress disorder and traumatic brain
injury: shared clinical presentations, behaviors, and
neural circuitry. Figure created with BioRender.com.
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processes underlying how an individual experiences and ex-
presses emotions (24,25). There is significant overlap in the
clinical presentation, behaviors, and neural consequences of
PTSD and TBI, many of which can be conceptualized as as-
pects involving or resulting from emotional dysregulation.
Dysregulation may represent poor bottom-up processing of
emotionally relevant information (e.g., problems with detecting
emotions) or maladaptive top-down control of emotions (e.g.,
difficulty engaging an appropriate coping strategy) (24,25).

Multiple aspects of emotion dysregulation have been linked
with chronic poor outcomes of both TBI and non-TBI trauma.
Indeed, two of the defining symptom clusters of PTSD involve
emotion dysregulation (i.e., re-experiencing/intrusive thoughts
and memories, cognitive and emotional avoidance of trauma
reminders) (26). Similarly, in addition to physical and physio-
logical symptoms, TBI is often accompanied by changes in
mood and cognition (i.e., increased irritability and decreased
inhibition), both of which are associated with regulation of
emotion (12). Shared behavioral presentations of PTSD and
TBI include enhanced fear learning, fear generalization, and
avoidance of trauma-related reminders (27–29). We posit that
these behavioral profiles are driven by changes in emotion
regulation circuitry (reviewed below).

The neural bases of emotion and emotion regulation have
been well established and involve both cortical and subcortical
brain regions [for review, see (30–33)]. Briefly, motivational
features of an emotional stimulus engage primarily subcortical
regions, including the amygdala, hippocampus, striatum, per-
iaqueductal gray, and ventromedial prefrontal cortex (PFC)
(31,33). Implicit and explicit (i.e., with or without conscious
472 Biological Psychiatry March 1, 2022; 91:470–477 www.sobp.org/j
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effort) emotion regulation involves complex bidirectional re-
lationships among PFC-subcortical circuitry (25,31). For
instance, threat detection and monitoring, which is heightened
in PTSD (33), involves deficient cortical modulation of
subcortical structures (i.e., inhibited anterior cingulate cortex
[ACC] and reduced PFC modulation of amygdala, striatum,
and periaqueductal gray) (25,31). Subsequent adaptive
conscious reappraisal of threat is achieved through increased
modulation of the ACC and PFC over limbic regions (25,30,34).
Collectively, subcortical structures subserving emotional
response and PFC regulation of response form the core cir-
cuitry for emotion regulation. Molecular changes resulting from
physical and/or emotional trauma directly impact emotion
regulation circuitry, giving rise to the shared emotion dysre-
gulation features of PTSD and TBI.
ACUTE STRESS-RELATED MOLECULAR CHANGES
IMPACT EMOTION REGULATION CIRCUITRY

Studies of the acute effects of both noninjury trauma and TBI
suggest that a cascade of molecular changes in stress and
emotion regulation circuitry (reviewed in Figure 2) may have
long-term adverse consequences for this circuitry, increasing
risk for PTSD and PCS (35). In this regard, work on the role of
neurotransmitters and hormones released through the
hypothalamic-pituitary-adrenal (HPA) axis in traumatic injuries
has been informative. Briefly, the HPA axis regulates re-
sponses to stress by altering levels of neuroendocrine and
neural signaling [for review, see (36)]. Poor trauma outcomes
are associated with dysregulation of homeostatic HPA func-
Figure 2. An overview of the shared neural and
molecular modifications associated with post-
traumatic stress disorder (PTSD) and traumatic brain
injury (TBI). Figure created with BioRender.com. FA,
fractional anisotropy; HPA, hypothalamic-pituitary-
adrenal.
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tioning (37). TBI causes an initial surge in glucocorticoids
(36,38), followed by continued HPA dysregulation that in-
terferes with adaptive responding to stress (39–41). Over time,
this abnormal stress responding is bidirectionally linked to
neuroinflammation and worse psychiatric and neurocognitive
outcomes after TBI (42).

The HPA axis also plays an important role in stimulating
glutamate release following stress, which, if excessive, can
adversely impact PFC-subcortical circuitry. Glucocorticoid
activity following acute noninjury stress increases release of
glutamate (43), especially in the PFC and hippocampus
(35,44,45). Heightened glucocorticoid secretion (37,46) and
excess glutamatergic activity are also evident acutely following
TBI (47–49). Thus, similar glucocorticoid HPA-initiated gluta-
mate release is evident immediately following both noninjury
emotional stress and TBI. Moreover, administration of gluco-
corticoid receptor antagonists blocks this increased glutamate
release and reduces anxiety and depressive behaviors (44,50).
In addition, CB1 receptor gating of glutamate, a mechanism
reducing its release, has also been shown to blunt these
adverse effects on PFC (51). Left unchecked, excess gluta-
mate results in excitatory toxicity, including dendritic atrophy
(52) and cell death (53), and inflammation (54,55) in the PFC
and hippocampus. Together, these findings suggest that the
acute posttrauma stress response following TBI activates this
glucocorticoid-glutamate response, which contributes to pro-
longed distress and neurocognitive problems via its impact on
circuitry shared by PTSD and PCS symptoms (56).

Preclinical models of TBI offer an opportunity to better
explore how TBI impacts specific emotion regulation behaviors
subserved by PFC-subcortical circuitry (57). The numerous
molecular and cellular changes resulting from TBI [induced
using different experimental methods; models reviewed in (58)]
occur in expected subcortical structures, including the amyg-
dala and hippocampus (58). Previous work using Pavlovian
conditioning with rodents suggests that TBI broadly enhances
fear learning, as evidenced by enhanced fear acquisition,
greater generalization to fear-related stimuli, and impaired fear
extinction (26,27). Consistent with the stress-induced dysre-
gulation of glutamatergic activity detailed above, disruption of
glutamate receptors also disrupts fear learning and memory
(59). Importantly, these findings translate well to human work,
indicating that TBI is associated with abnormal and heightened
fear learning (60). Underlying enhanced fear learning are
modifications to specific subregions of the amygdala and
hippocampus. For example, TBI induces upregulation of the
ionotropic NMDA glutamate receptors in subregions of the
amygdala, which supports long-term potentiation, a mecha-
nism by which fear learning and memories can be enhanced
and strengthened (27). Additionally, upregulation of transcrip-
tional factors (61) and gene expression in the canonical fear
network, including the amygdala (62), PFC, and hippocampus,
have been identified following TBI.

As reviewed here, there are common acute stress-induced
molecular changes that occur as a result of physical injury
and emotional trauma. These modifications appear to disrupt
emotion regulation circuitry and alter fear learning and memory
processes common to both PTSD and TBI. Although the
bidirectional pathways in which TBI may contribute to
PTSD1TBI comorbidity have not been fully elucidated, recent
Biological P
Downloaded for Anonymous User (n/a) at University of Wiscon

2022. For personal use only. No other uses without permis
work suggests that modifications in sensory systems may
create vulnerability to PTSD (63). Indeed, sensitivity to auditory
cues and associated increased activation between sensory
brain regions and the amygdala was significantly related to
greater PTSD-like behavior in rats (63). How higher-order
sensory systems may be impacted by TBI and PTSD and the
mechanisms by which these systems influence symptoms is a
promising direction for future research.

LONG-TERM OVERLAPPING NEURAL
CONSEQUENCES OF TRAUMATIC INJURIES IMPACT
EMOTION REGULATION CIRCUITRY

The chronic symptoms following TBI likely rest on shared
impact of acute and persistent stress-induced molecular
changes on emotion regulation neurocircuitry. Of note, there is
a significant gap in this literature, because there are few
structural and functional magnetic resonance imaging (fMRI)
studies evaluating both TBI and psychological symptoms (i.e.,
PCS and/or PTSD) in either civilian or military samples. While a
substantial body of work has examined resting-state fMRI
aberrations in TBI along the severity spectrum (64–68), these
studies often do not account for possible psychological
symptoms that accompany TBI [e.g., (69)]. Similarly, studies in
the PTSD literature often neglect to account for TBI (68,70,71),
although a few have examined samples with only mTBI [e.g.,
(71,72)] or a history of head injury [e.g., (73)]. Exclusion of
participants with moderate to severe TBI during recruitment is
common in the PTSD literature, because TBI is expected to
contaminate fMRI signal and analysis of PTSD-related neural
processes [e.g., (69)]. Despite the sizable gap in this work, a
comprehensive review of the few studies that have examined
the overlap in the effects of PTSD1TBI using various neuro-
imaging techniques has been done previously (74). The com-
monalities in PTSD and TBI are apparent in brain structural
morphology and functional connectivity (74–76). Here, we
emphasize how the overlap in regions that underlie emotion
regulation may relate to specific affective PTSD and TBI
symptoms. Understanding the underlying neurocircuitry of
symptoms for those with PTSD1TBI can guide clinical de-
cisions related to treatment, particularly in the acute aftermath
of traumatic injury (77).

Diffusion tensor imaging has revealed how the integrity of
white matter tracts in the brain is impacted by TBI and PTSD.
The majority of studies using diffusion tensor imaging have
examined PTSD and TBI separately, although ultimately the
findings highlight similarities (74). In both military and trauma-
exposed civilian samples with mild to severe TBI, abnormal-
ities in frontolimbic circuits, including cingulum fiber bundles,
which connect the cingulate cortex to the hippocampus, have
been reported (63,78,79). Although psychological symptoms
were not considered in these samples, white matter pathology
(decreased fractional anisotropy [FA], an index of structural
integrity derived from diffusion tensor imaging) increased with
severity of TBI (63,79). Similarly, there is a direct relationship
between decreased FA of the cingulum bundles and PTSD
symptom severity, as well as chronicity (78,80–82). Similar
white matter abnormalities have been described in veterans
with comorbid major depressive disorder, PTSD, and mTBI,
with more significant decreases of FA in individuals with all
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three diagnoses (83). Indeed, in veteran samples, widespread
decreases in cerebral white matter FA, particularly in the
cingulum, are pronounced in those with both mTBI and PTSD
compared with those with only mTBI or PTSD (84,85).
Furthermore, in a veteran sample, the number of regions with
reduced white matter FA mediated the relationship between
mTBI and PCS symptoms (86). The cingulum bundle has been
implicated in attention modulation of emotion and memory
(78). Therefore, reduced integrity of this frontolimbic pathway
may lead to aberrant emotion regulation and memory functions
(i.e., hyperarousal, intrusive memories, overgeneralization of
fear to trauma-related stimuli), affective symptoms common to
both PTSD and TBI (78,87). Collectively, these findings
demonstrate that white matter integrity, specifically in fronto-
limbic circuitry that supports emotion regulation, is not only
altered by TBI alone as a result of physical injury but also
impacted by and affects the development of psychological
symptoms following injury. Still, more longitudinal research is
needed to truly determine how white matter integrity reduction,
most notably in frontolimbic pathways, corresponds to the
interaction between PTSD and TBI.

fMRI is particularly useful in evaluating how symptoms of
TBI and psychiatric disorders may independently and mutually
alter functional connectivity at rest (i.e., when the participant is
not engaged in a task) and during affective tasks. Civilians with
mTBI showed decreased resting-state functional connectivity
between the insula and PFC, although neither PCS nor post-
traumatic stress symptoms were evaluated (88), even though
this decreased connectivity is evident in PTSD. In a veteran
sample with mTBI, decoupling of insula-PFC and caudate-PFC
connectivity at rest was related to greater posttraumatic
intrusion symptoms and more errors processing threatening
versus safe stimuli (89). This aligns with the emotion dysre-
gulation framework: the anterior insula contributes to intero-
ceptive awareness, suggesting that the observed deficits in
PFC inhibition permitted greater internal attention to intrusive
thoughts (90). Notably, this reduced connectivity is also linked
to impaired cognitive function (e.g., deficits in orientation and
abstract thinking), suggesting that insula-PFC circuity may
underly both TBI and PTSD symptoms (88).

Previous theoretical reviews have implicated the hippo-
campus, orbitofrontal cortex, and dorsolateral PFC as potential
regions where TBI and PTSD may overlap (91,92). Simmons
and Matthews (93) conducted a meta-analysis to identify re-
gions that are disrupted in both PTSD and TBI, thereby
providing data-driven regions of interest for future in-
vestigations. Both the caudate, a component of the striatum,
and the ACC were identified. The caudate is a region important
for associative learning processes (93), and the ACC is impli-
cated in the appraisal of emotional stimuli (25). Together, these
regions coordinate emotional responses to stimuli and may
underlie generalization of responses to trauma- and
nontrauma-related cues. The dorsolateral PFC/middle frontal
gyrus, a region important for executing goal-directed behavior
such as regulating emotional responses (25), also appears
vulnerable to both mTBI and PTSD; however, these results
have mixed directions, with articles noting both hyper- and
hypoactivation (93).

Ultimately, the structural and fMRI work indicates that the
circuitry common to PTSD and TBI involves regions supporting
474 Biological Psychiatry March 1, 2022; 91:470–477 www.sobp.org/j
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emotion regulation and that this circuitry is impacted following
physical and emotional traumatic injury.
CLINICAL IMPLICATIONS AND FUTURE DIRECTIONS

The neural consequences of acute injury- and stress-driven
changes in the brain from molecular- to system-level neuro-
circuitry contribute to the sequelae of emotion dysregulation
that confers risk of PCS and ASD and, ultimately, risk for
lasting symptoms of PTSD and major depressive disorder (10).
While the impact of TBI on physical and psychological health
outcomes has been studied for 2 decades (94), less clear is
how and when to intervene to prevent the negative sequelae of
PTSD1TBI. This cascade of neural changes highlights the
importance of better understanding the timing and type of in-
terventions used to treat, or ideally prevent, PTSD1TBI and
PCS.

Decision making in and timing of clinical care during the
golden hour after traumatic injury is critical. In addition to
standard medical care, consultation from a clinician trained in
trauma-informed care could also improve short- and long-
term outcomes (19). Given the substantial overlap in neuro-
circuitry of PTSD1TBI and affected emotion regulation, it is
nearly impossible to disentangle which condition is driving
symptoms. Akin to most bodily injury, the physical damage of
TBI takes time to heal even with early medical care. However,
early attention to posttraumatic stress symptoms has been
shown to improve chronic psychological outcomes (77,95).
Therefore, especially in the acute phase, reducing emotional
and psychological response to trauma could free up bodily
resources for healing physical trauma of TBI or improve
response to clinical treatments (96,97). However, it is unclear
how trauma-intensive early treatments are impacted by the
symptoms of TBI, a worthy area for future discovery to
development of PTSD1TBI–specific interventions.

Improvement of chronic outcomes can be facilitated by
ongoing engagement in both physiological/physical and
emotional/mental health treatments for the first 6 months to a
year following traumatic injury. For example, psychological
intervention after concussion reduces depressive symptoms
and risk of PCS (98–100). Cognitive behavioral therapies
(CBTs) are the gold standard for treating PTSD and have also
been shown to be effective in treating those with long-term
PTSD1TBI. Cognitive processing therapy (101) and pro-
longed exposure therapy (two types of CBT for PTSD) (102)
reduce symptoms of PTSD, depression, and PCS. The utility of
CBT for not only PTSD but also TBI symptoms may be due in
part to CBT leading to functional improvements in brain re-
gions responsible for emotion regulation (103) that are
impacted, as outlined above. Moreover, evidence suggests
that CBT is an effective treatment for ASD1TBI symptoms in
the early aftermath of traumatic injury (104), supporting the use
of CBT as a secondary prevention technique. Beyond CBT,
other common therapeutic techniques (e.g., mindfulness)
similarly target emotion regulation processes (19). These
promising studies suggest that CBT and other therapies
known to directly impact emotion regulation circuitry and
processes are effective treatments for TBI symptoms. Early
provision of interventions targeting emotion dysregulation may
disrupt the cascade of stress-induced molecular changes
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following TBI, sparing long-term impacts on emotion regulation
circuitry and improving TBI and PTSD symptom trajectories.
Certainly, additional work is needed to assess the specificity of
these early interventions on emotion regulation circuitry as a
mediator of PTSD1TBI outcomes.

Improvements in clinical and medical care have significantly
reduced mortality rates of TBI (2); however, long-term out-
comes associated with the emotional and psychological
distress of the event leading to injury have been infrequently
addressed in the treatment of TBI. Lack of consensus and
implementation of best practices in clinical treatment of TBI
(e.g., different timing of interventions) may explain variability in
chronic outcomes (2). However, administration of psychologi-
cal interventions to treat trauma-related symptoms should be
more readily applied within current TBI treatment protocols.
Because it remains unclear whether physical damage perpet-
uates psychological symptoms or vice versa, the medical and
psychological clinical care for patients with TBI should be
weighted equally, and a more holistic approach to treatment
should be taken.

Emotion dysregulation plays a key role in the shared out-
comes of PTSD and TBI as evidenced by the overlap in
symptom presentation (i.e., hypervigilance, memory deficits,
sensory sensitivity, irritability), behavior (i.e., avoidance, over-
generalization of fear), and shared neural circuitry. Ultimately,
the field needs additional well-controlled studies, specifically
framed through the lens of emotion regulation, to determine
best practice for prevention and intervention to improve long-
term quality of life for patients with PTSD1TBI.
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