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ABSTRACT
BACKGROUND: Posttraumatic stress disorder (PTSD) is a debilitating disorder, and there is no current accurate
prediction of who develops it after trauma. Neurobiologically, individuals with chronic PTSD exhibit aberrant resting-
state functional connectivity (rsFC) between the hippocampus and other brain regions (e.g., amygdala, prefrontal
cortex, posterior cingulate), and these aberrations correlate with severity of illness. Previous small-scale research
(n , 25) has also shown that hippocampal rsFC measured acutely after trauma is predictive of future severity
using a region-of-interest–based approach. While this is a promising biomarker, to date, no study has used a
data-driven approach to test whole-brain hippocampal FC patterns in forecasting the development of PTSD
symptoms.
METHODS: A total of 98 adults at risk of PTSD were recruited from the emergency department after traumatic
injury and completed resting-state functional magnetic resonance imaging (8 min) within 1 month; 6 months
later, they completed the Clinician-Administered PTSD Scale for DSM-5 for assessment of PTSD symptom
severity. Whole-brain rsFC values with bilateral hippocampi were extracted (using CONN) and used in a
machine learning kernel ridge regression analysis (PRoNTo); a k-folds (k = 10) and 70/30 testing versus
training split approach were used for cross-validation (1000 iterations to bootstrap confidence intervals for
significance values).
RESULTS: Acute hippocampal rsFC significantly predicted Clinician-Administered PTSD Scale for DSM-5 scores at 6
months (r = 0.30, p = .006; mean squared error = 120.58, p = .006; R2 = 0.09, p = .025). In post hoc analyses,
hippocampal rsFC remained significant after controlling for demographics, PTSD symptoms at baseline, and
depression, anxiety, and stress severity at 6 months (B = 0.59, SE = 0.20, p = .003).
CONCLUSIONS: Findings suggest that functional connectivity of the hippocampus across the brain acutely after
traumatic injury is associated with prospective PTSD symptom severity.

https://doi.org/10.1016/j.bpsc.2021.08.007
Approximately 8%–10% of American adults who experience a
traumatic event will develop symptoms of posttraumatic stress
disorder (PTSD), including hyperarousal, unwanted thoughts
(e.g., flashbacks), and altered cognitive states (1). Among the
most prevalent types of trauma is physical injury (2), with adults
at heighted risk of developing symptoms (e.g., approximately
20% of survivors admitted to an emergency room meet criteria
for PTSD diagnosis within 1 year) (3,4). While the overall un-
derstanding of PTSD etiology and its treatment continues to
improve, implementation of therapeutic interventions early
(e.g., in the weeks after trauma) yields the greatest benefits
(2,5,6). To provide early treatment, however, clinicians must be
able to identify which individuals are at risk of developing
PTSD.
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Previous research demonstrates that pretrauma risk factors
such as sleep quality and presence of anxiety and depression
increase the incidence of PTSD (7), while a number of pre- and
peritraumatic factors, including those that are clinical (e.g.,
symptoms of distress) and biological (i.e., heart rate/blood
pressure), can significantly add to the development of post-
traumatic stress symptoms (8,9). The study of neural abnor-
malities qualified in the acute aftermath of trauma may also
help identify those most at risk (10–14). Much of this work has
centered on the amygdala, which is involved in generation of
negative affect (10,15–18). However, the hippocampus, which
is densely functionally and structurally connected to the
amygdala, is responsible for the consolidation of fear mem-
ories (19) and is strongly implicated in PTSD (20). Indeed, a
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fundamental feature of PTSD is atypical memory encoding and
retrieval, particularly in the context of emotional memory
(19,21–23), functions that are hippocampal dependent (24).
This is particularly true in the context of fear and extinction
learning, whereby alterations in the hippocampus are often
found in the context of trauma-related stimuli or general
negative affect (22,25). Notably, hippocampal aberrations
frequently coincide with altered amygdala functioning (22,25).
Despite alterations in both regions (25), hippocampal func-
tional discrepancies—but not always the amygdala—are
distinctly correlated with PTSD symptoms (25). This suggests
utility in explicitly studying hippocampal functioning as it re-
lates to PTSD outcomes after trauma.

Previous theoretical models postulate that altered stress
hormone release through cortisol in individuals with PTSD has
deleterious effects on the hippocampus, either by inducing
cytotoxic effects (26) or by impeding neuroplasticity (27).
Indeed, trauma-induced structural changes to the hippocam-
pus may be associated with altered function (28). Although
previous research shows instances of both hypoengagement
(25,29) and hyperengagement (30) of the hippocampus in
response to negative and neutral stimuli as well trauma-
specific reminders, these aberrations are associated with
poor memory performance. Specifically, greater engagement
of the hippocampus in response to negative words is associ-
ated with more false positives (e.g., misremembering novel
stimuli) (30). Likewise, reduced activity in the hippocampus in
response to trauma-specific stimuli is also associated with the
presence of false alarms for trauma-related images (25). Neu-
robiologically, this supports what has been demonstrated in
behavioral studies of memory functioning for some time,
namely, that individuals with PTSD are less accurate compared
with control subjects when recalling neutral (31), emotional
(21), and episodic (32) autobiographical information. Such
memory deficits have been posited to underlie the over-
generalization of fear as a cardinal symptom of PTSD (33), as
the hippocampus contributes to both the extinction and/or
regulation of fear in inappropriate contexts by providing
context-dependent processing (22,34).

In addition, hippocampal aberrations in those with PTSD
appear across various task probes and in both affective (20)
and cognitive (19) domains, adding to its prevalence in this
disorder. To date, one of the most widely used techniques in
studying the relationship between the hippocampus and PTSD
is to quantify its functioning and associated connectivity during
rest (e.g., when participants are not engaged in a task), and
indeed, individuals with chronic PTSD exhibit altered hippo-
campal functional connectivity (FC) at rest (hippocampal
resting-state FC [rsFC]). First, hippocampal rsFC is altered with
hubs of the default mode network (DMN), implicated in self-
referential processing in the absence of task demand. Spe-
cifically, those with PTSD show reduced connectivity of the
hippocampus with the ventromedial prefrontal cortex (PFC)
(35), medial PFC (36), and posterior cingulate cortex (37)
compared with trauma-exposed control subjects. Other work
has found evidence of greater integration of the hippocampus
with the DMN (38) and greater integration of the hippocampus
with regions of the salience network, which is involved in the
detection of salient stimuli (39). This suggests that altered
processing of learned fear (subserved by the hippocampus)
140 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging F
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may be related to differences in internally focused (e.g., DMN)
and externally focused (e.g., salience network) thoughts (39) in
those with PTSD. Second, although hippocampal rsFC with
nodes of the DMN is atypical in individuals with PTSD and
generalized anxiety disorder compared with healthy control
subjects, this effect is driven by those with PTSD as the pri-
mary diagnosis (40). Finally, several studies demonstrate that
hippocampal rsFC correlates with individual variability of PTSD
symptoms (41,42). Decreased hippocampal rsFC with the
amygdala (43–45), medial PFC (35), and posterior cingulate
cortex (37,46), as well as the hippocampal rsFC with the
ventromedial PFC and dorsolateral PFC (47), are all signifi-
cantly related to PTSD severity. Combined, this research
demonstrates aberrant hippocampal rsFC in those with PTSD
compared with control subjects and that this characteristic
distinguishes PTSD from other internalizing disorders (40)
while meaningfully correlating with severity of the disorder.

Although cross-sectional associations with symptoms is
informative, the hippocampus may also be a critical brain re-
gion important for disease onset and trajectory. A consistent,
though not flawless (48–50), biomarker of the development of
PTSD after trauma is smaller hippocampal volume before
trauma (12,17,51–53). An increasing body of work also sug-
gests that the hippocampus may undergo early changes in
response to trauma (e.g., within days and up to 1 year after
trauma exposure) that can be measured through hippocampal
rsFC and may be directly related to PTSD symptom progres-
sion (46,54,55). Greater acute posttrauma hippocampal rsFC
with the amygdala (54), with the posterior cingulate cortex (55),
and between hippocampal subfields (46) is a significant pre-
dictor of less PTSD symptoms up to 4 (46) and 6 months
(54,55) after trauma exposure. Other work demonstrates that
greater acute posttrauma PFC connectivity with an arousal
network—defined in part by the hippocampus—predicts less
PTSD severity 3 months after trauma (56). Importantly, PTSD is
frequently comorbid with major depressive disorder (57), with
multiple overlapping symptoms characterizing both disorders
(58). Yet, to our knowledge, the above studies did not test
whether hippocampal connectivity measured acutely after
trauma forecasts future PTSD severity while accounting for
comorbid symptoms of depression.

The above work implies value of hippocampal rsFC for the
prediction of PTSD and that this relationship is not dependent
on connectivity with a single brain region. Thus, in contrast to
singular region approaches, machine learning methods offer
an opportunity to explore the most useful disorder-specific
neural patterns across the entire brain without the con-
straints of traditional univariate schemes (59). Multivariate
pattern analysis (MVPA) offers such an innovative approach
toward forecasting mental health outcomes. In recent years,
MVPA has been applied to understanding the neural correlates
of PTSD (15,60,61), major depressive disorder (62–64), and
other disorders (65). Briefly, this machine learning approach
tests whether whole-brain distributed rsFC patterns are useful
in predicting individual symptoms (66). By analyzing neural
spatially distributed activation, MVPA can be used to “decode”
the brain and identify information (i.e., future PTSD symptom
severity) that is represented in voxels throughout the whole
brain, with voxels representing either activation during task-
based activities or connectivity with another part of the brain
ebruary 2022; 7:139–149 www.sobp.org/BPCNNI
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(e.g., hippocampus) (59,66–68). Past MVPA approaches have
used hippocampus whole-brain connectivity to differentiate
when individuals with PTSD are engaged in trauma recall
versus neutral imagery (60). Other machine learning techniques
have shown that mean volume reduction in the hippocampus
contributes to accurate classification of those with PTSD from
control subjects (accuracy: 69%, specificity: 81%) (69). In
addition, a machine learning classifier investigation found that
amygdala-hippocampal structure through tract strength
contributed to accurate prediction of trauma-exposed versus
trauma-naïve individuals (70). Thus, patterns of hippocampal-
based activation (60) and hippocampal structure (69) can
significantly predict trauma history, PTSD symptoms, and
unique features of the disorder. However, to our knowledge,
MVPA has never been applied to examine the utility of hip-
pocampal rsFC to forecast individual PTSD symptom severity.

In this study, we used MVPA to test whether acute (i.e.,
within 1 mo after injury) hippocampal rsFC patterns forecasted
participants’ future (i.e., 6 mo after injury) clinician-assessed
PTSD symptom severity in a large, heterogeneous sample of
patients at risk for PTSD. We assessed PTSD symptoms using
the Clinician-Administered PTSD Scale for DSM-5 (CAPS-5),
considered to be the gold standard assessment of PTSD
(71,72). Previous MVPA work in PTSD (15,61) has used less
reliable measures (i.e., self-report measures) of PTSD, such as
the PTSD Checklist. Based on findings from previous studies,
we hypothesized that postinjury hippocampal rsFC would
significantly forecast individual PTSD total symptom severity at
6 months after injury and, importantly, that the prediction
would still be significant in a regression model adjusting for 6-
month general depression, anxiety, and stress scores and
baseline PTSD symptoms.

METHODS AND MATERIALS

Participants

Traumatically injured adults were recruited from a level
1 trauma center either directly from the emergency department
or by phone after emergency department discharge. Partici-
pants were eligible if they 1) were aged between 18 and 60
years, 2) were English speaking, 3) met the DSM-5 criterion A
for a PTSD diagnosis, and 4) exhibited a greater risk of
developing PTSD based on a minimum score of 3 (out of 5) on
the Predicting PTSD Questionnaire (6). Participants were
excluded if they 1) experienced a moderate or severe head
injury as the result of their trauma based on a score of .13 on
the Glasgow Coma Scale (73,74), 2) had a spinal cord injury
with neurologic deficit, 3) were admitted to the emergency
room as the result of intentional self-inflicted injury, 4) exhibited
severe vision or hearing impairments, 5) had a history of psy-
chotic or manic symptoms or were currently taking antipsy-
chotic medications, 6) had a history of clear substance abuse,
7) were on police hold after their traumatic injury, or 8) were not
compatible for magnetic resonance imaging (MRI) based on
the following: presence of ferromagnetic material in the body,
claustrophobia, inability to lie still for 2 hours, or either currently
pregnant or trying to become pregnant. Exclusion criteria were
assessed via self-report during the screening process and
additionally via a review of medical records for the presence of
diagnostic codes. All participants provided written consent,
Biological Psychiatry: Cognitive Neuroscience and Neur
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and all study procedures were approved by the local institu-
tional review board. Participants were compensated for their
time, and all procedures complied with the Declaration of
Helsinki.

Procedure

On enrollment, participants completed an 8-minute rsfMRI
scan within 1 month of their traumatic injury. At that visit
(henceforth referred to as baseline), they also completed a
number of demographic and clinical assessments, including
the PTSD Checklist for DSM-5 (PCL-5) (75). The PCL-5 is a
20-item self-report measure of posttraumatic stress symptoms
with good internal consistency (Cronbach’s a = 0.94),
convergent validity (r . 0.75), and test-retest reliability (r =
0.92) (76). Six months later, participants returned for a follow-
up visit, at which time they completed the CAPS-5 (77) with
a trained research staff member. The CAPS-5 is considered a
gold standard assessment of PTSD and exhibits high internal
consistency (a = 0.88) and good test-retest reliability (intra-
class correlation coefficient = 0.78) (77). An internal reliability
check on the CAPS-5 was completed for this study across
2 separate raters for 20% of CAPS-5 completed at 6 months.
Results demonstrated excellent agreement among raters
(kappa = 0.83, p , .001) and excellent reliability between total
symptom severity scores (intraclass correlation coefficient =
0.96, 95% CI 0.93–0.98).

In addition to the CAPS-5, participants completed the
21-item Depression Anxiety and Stress Scales (DASS-21) at
the 6-month visit for self-reported assessment of general
depression, anxiety, and stress severity (78). Each of the
depression (a = 0.81), anxiety (a = 0.89), and stress (a = 0.78)
scales of the DASS-21 have been found to have excellent in-
ternal consistency (79).

rsfMRI Acquisition

During the rsfMRI scan, participants viewed a white crosshair
displayed on a black background and were instructed to keep
their eyes open. Scanning was performed on a 3.0T short bore
GE Signa Excite MRI system at the Medical College of Wis-
consin. Functional T2*-weighted echoplanar images were
collected in a sagittal orientation with the following parameters:
repetition time/echo time = 2000/25 ms; field of view = 22.4
mm; matrix = 64 3 64; flip angle = 77�; slice thickness = 3.5
mm; voxel size = 3.5 3 3.5 3 3.5 mm; # slices = 41; volumes =
192. A high-resolution T1-weighted anatomical image was also
acquired for coregistration with the following parameters:
repetition time/echo time = 8.2/3.2 ms; field of view = 240 mm;
matrix = 256 3 224; flip angle = 12�; voxel size = 0.9375 3

1.071 3 1 mm, # slices = 150.

Data Analysis

Image Preprocessing. Individual functional images were
analyzed using the CONN functional connectivity toolbox (80)
and preprocessed according to standard procedures. Briefly,
images underwent spatial realignment using the SPM12 realign
and unwarp procedure (81) with all scans referenced to the first
image and estimated motion parameters calculated across six
variables representing three translation (displacement) pa-
rameters and three rotation parameters. Temporal
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misalignment was corrected using slice-time correction (82).
Because small head movements can cause spurious noise and
distance-dependent changes in signal correlations (83,84),
framewise displacement was computed to rule out con-
founding effects of motion. Volumes with framewise
displacement . 0.2 mm (plus 1-back and 2-forward neigh-
boring volumes) were scrubbed (e.g., removed from analysis).
Participants were excluded if more than 25% of the frames
were scrubbed. In addition, subjects with cumulative move-
ment . 3 mm or 3� of rotation were identified for removal from
analysis. Structural segmentation and normalization were done
to classify data into gray matter, white matter, and cerebro-
spinal fluid through the estimation of the posterior tissue
probability maps in SPM12 (85). Images were then normalized
to the Montreal Neurological Institute template and smoothed
with a 4 mm3 Gaussian kernel (86). To isolate rsfMRI signal,
resulting data were bandpass filtered at 0.01–0.09 Hz, while
signal from cerebrospinal fluid and white matter and motion
realignment parameters were entered as regressors of no in-
terest to control for these effects during scanning.

Pattern Recognition Analysis. Two whole-brain hippo-
campal rsFC maps were computed for each subject at the first
level using CONN, one representing connectivity with the right
hippocampus and one with the left hippocampus. Each map’s
voxels represented a Fisher-transformed bivariate correlation
coefficient between the respective seeds’ (e.g., right and left
hippocampi) blood oxygen level–dependent time series and
every other voxel’s blood oxygen level–dependent time series.
The right and left hippocampi were defined using the Auto-
mated Anatomical Labeling–defined mask from the SPM
toolbox (87,88).

Both maps were subsequently used as features in a multi-
variate kernel ridge regression (KRR) using the PRoNTo
toolbox (http://www.mlnl.cs.ucl.ac.uk/pronto/) (89). KRR is a
machine learning technique and a form of linear ridge regres-
sion (sum of squares) with the addition of a kernel function.
Ridge regression introduces bias to improve model fit and
accuracy of forecasted predictions. Extending this approach,
KRR adds a function based on the “kernel trick,” whereby a
kernel is used to improve model fit by operating in feature
space. KRR is often considered an improvement on
regression-based models for prediction as it offers a more
efficient way to transform the data without the need to
compute coordinates in a higher dimensional space (90).

Each hippocampal rsFC map served as its own feature
(number of features = 2) and was provided for each individual
subject while feature selection was constrained to voxels in-
side the brain through the use of a standard binary mask (89).
In the calculation of features, a near kernel was used with a
square matrix of dimensions N 3 N, where the kernel reflected
a similarity measure between each participant, called the dot
product. We did not use a second-level mask to constrain
feature selection by a subset of voxels; instead, all voxels
within the brain (representing connectivity with the respective
hippocampal seed region) were used for model prediction.
Model prediction using the KRR approach was then computed
and generalizability estimated using two different approaches.
First, to use the entire sample, we used a k-folds (k = 10)
142 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging F
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approach for cross-validation. The k-folds approach for cross-
validation has been used previously in machine learning in-
vestigations involving those with PTSD (91) and may be
superior to the use of training versus test datasets for this
purpose when sample sizes are considered small by machine
learning standards. Importantly, cross-validation ensures that
the model is generalizable and prevents overfitting. Identical to
past studies (15), features (i.e., left and right hippocampal rsFC
maps) were first mean centered using the training data (9-folds;
90% of dataset). In addition to this approach, we also split our
dataset into a training set (approximately 70% of sample) and a
testing set (approximately 30%) and used a k-folds approach
where k = 1 to train on the 70% subsample and subsequently
test the model performance on the 30% subsample. In both
approaches, the performance of the model was characterized
using several metrics, including the (cross-validated) Pearson
correlation coefficient (r), mean squared error, and the coeffi-
cient of determination (R2) between model-estimated CAPS-5
and the true CAPS-5 scores. Significance values for prediction
scores were obtained using permutation testing across 1000
iterations, a necessary step when dealing with large neuro-
imaging datasets that violate the assumption that data are
independently and identically distributed. The choice for 1000
permutations was based on current recommendations (92) and
identical to previous machine learning MVPA publications us-
ing neuroimaging data (15,61).

Results of the model were also viewed through the calcu-
lation of weights for each voxel as a colormap, whereby
warmer colors reflected voxels that increased model prediction
by a value of the features (e.g., hippocampal rsFC), and cooler
colors reflected voxels that decreased model prediction by a
value of the features, assuming all other voxels are fixed. That
is, each voxel’s contribution to the model performance was
visualized. Post hoc averaging of weight values by individual
brain regions was also done during this step (93), although we
did not constrain weight contribution to its average within brain
regions for the calculation of the model. Here, post hoc aver-
aging of weight values was done only for illustrative purposes,
similar to other published accounts (15,61,94), as all voxels
contributed to model performance, and it is inaccurate to
single out the predictive utility of one region (95). For averaging
of weight values by brain region, we used the Automated
Anatomical Labeling atlas, resulting in the averaged weight
values for 117 brain regions.

RESULTS

Participants

A total of 139 participants were initially recruited for this study.
Of this, 31 participants were excluded from analysis for the
following reasons: 1) lost to follow-up (n = 12), 2) excess mo-
tion during rsfMRI defined as .25% volumes lost in scrubbing
and/or $3-mm movement in any one direction (n = 28), or 3)
alignment problems in reconstruction of imaging data (n = 1).
This left a final sample of 98 participants.

Participants completed their baseline appointment between
6 and 33 days after injury (mean [SD] = 18.57 [5.51] days) and
their follow-up appointment between 5 and 8 months after
injury (mean [SD] = 6.07 [0.43] months). Mechanism of injury
ebruary 2022; 7:139–149 www.sobp.org/BPCNNI
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varied across the sample but consisted primarily of survivors of
motor vehicle crashes (67%). The remaining injuries were
classified as assault (16%), crush injuries (,5%), pedestrian
injuries (,5%), dog bites (,5%), falls (,5%), gunshot (,5%),
domestic violence (,5%), sexual assault (,5%), and bicycle
accident (,5%; exact percentage is not included to ensure
participant confidentiality). Complete participant de-
mographics are reported in Table 1.

PTSD Symptoms

At baseline, PTSD severity measured by the PCL-5 ranged
from 0 to 73 (mean [SD] = 25.76 [17.41]). At 6 months, PTSD
severity as measured by the CAPS-5 ranged from 0 to
63 (mean [SD] = 11.98 [11.53]), indicating that 6 months after
injury, participants’ symptomatology ranged from asymptom-
atic to severe PTSD (96).

MVPA Results

Using the full sample in cross-validation, model results
demonstrated that baseline whole-brain hippocampal rsFC
significantly predicted CAPS-5 scores at 6 months (r = 0.30,
p = .006; mean squared error = 120.58, p = .006; R2 = 0.09, p =
.025). Results were the same when using a training (n = 68)
versus testing (n = 30) set for model validation (r = 0.46, p =
.002; mean squared error = 217.38, p = .003; R2 = 0.21, p =
.007). As results of model fit did not change based on which
cross-validation method was used, the remaining results
reflect when the full sample (N = 98) was used in cross-
validation. Together, this suggests that the model prediction
was an accurate fit (based on significant mean squared error)
and that actual CAPS-5 scores (i.e., the targets in our regres-
sion) were well correlated with our predicted values based on
model fit (given a significant R2). Spatial distribution of color-
coded model weights for each voxel are depicted in Figure 1.
Table 1. Sample Demographics (N = 98)

Demographics Value

Age, Years 33.52 (10.30)

Education, Years 14.92 (2.39)

PCL-5 at Baseline 25.76 (17.41)

DASS-21: Depression at 6 Months 7.38 (9.06)

DASS-21: Anxiety at 6 Months 7.53 (8.07)

DASS-21: Stress at 6 Months 10.70 (9.07)

CAPS-5 at 6 Months 11.98 (11.53)

Gender, Female 53 (54%)

Ethnicity, Hispanic or Latino 9 (9%)

Race

Asian ,5 (,5%)

Black or African American 54 (55%)

White 32 (33%)

More than one race 5 (5%)

Unknown or not reported 6 (6%)

Values are presented as mean (SD) or n (%). Small sample sizes for
select racial groups are reported as ,5% to avoid participant
identification; thus, cumulative percentage surpasses 100% as
reported here.

CAPS-5, Clinician-Administered PTSD Scale for DSM-5; DASS-21,
Depression Anxiety Stress Scales; PCL-5, PTSD Checklist for DSM-5.
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Similar to other published MVPA studies (15,61,94), KRR-
derived weights constrained by brain region for the top 10%
of regions that contributed to model prediction are presented
in Table 2.

Predicted targets based on model fit were subsequently
extracted for use in post hoc analyses to examine this rela-
tionship further while controlling for select covariates (97). We
controlled for covariates in this fashion given that the addition
of covariates within the model prediction is applied to the linear
kernel, which is limited in removing the linear confound for
each effect for each voxel without assessing the effect of the
covariate on the pattern of voxels (e.g., at the multivariate
level). Extraction of the predicted model values alternatively
allowed us to examine the significance of the multivariate
model fit controlling for univariate factors. Here, predicted
targets were used in a hierarchical linear regression using
SPSS (version 26; IBM Corp.) to examine the strength of the
relationship between predicted and actual targets controlling
for gender (dichotomous variable; reference = 0 [male]); mean-
centered age; mean-centered time since injury at baseline;
mean-centered time since injury at 6 months; mean-centered
PCL-5 scores at baseline; and mean-centered DASS-21
depression, anxiety, and stress ratings at 6 months entered
into step 2 of the model. In addition, for controlling for differ-
ences in demographics and timing in the administration of
measures, this allowed to control for the presence of PTSD
stress symptoms at baseline (i.e., the time of rsfMRI data
collection) and to test for specificity in the relationship between
hippocampal rsFC and PTSD symptoms. Assumptions of the
linear model were met, such that residuals were homosce-
dastic, and there were no issues of multicollinearity (variance
inflation factor , 4.5).

Results demonstrated that the relationship between pre-
dicted (based on model fit) and actual CAPS-5 scores
remained significant when controlling for these factors (B =
0.59, SE = 0.20, p = .003). Results of the post hoc hierarchical
linear regression are reported in Table 3; Figure 2 depicts the
partial regression relationship between actual CAPS-5 scores
(y-axis) plotted against predicted CAPS-5 scores based on the
MVPA algorithm (x-axis) controlling for covariates.
DISCUSSION

To assess the utility of whole-brain hippocampal rsFC to
forecast future PTSD symptom severity, adult survivors of a
traumatic injury completed an rsfMRI scan acutely after
injury (within 1 month) and a structured clinical interview
evaluating PTSD symptoms approximately 6 months after
injury. Results demonstrated that hippocampal rsFC across
the whole brain was a significant predictor of future PTSD
severity, even after controlling for gender, PTSD self-
reported symptoms at baseline, and general depression,
anxiety, and stress symptoms as they were reported at
follow-up. That is, findings suggest that functional integra-
tion of the hippocampus across the brain acutely after
traumatic injury is a promising biomarker for prospective
PTSD severity, and that this relationship is specific to PTSD
when compared with general depression, anxiety, and stress
symptom development.
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Figure 1. Results of the kernel ridge regression
analysis depicting computed weight values in arbi-
trary units for each voxel across the entire brain.
Warmer colors indicate that these regions positively
contributed to model performance. In contrast,
voxels with low weight values, represented by cooler
colors, indicate weight values that negatively
contributed to model performance (e.g., push it
toward decreased prediction). x, y, and z indicate
Montreal Neurological Institute coordinates. ROI,
region of interest.
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Results support the use of data-driven MVPA approaches
for the prediction of psychiatric illness (62–65), including PTSD
symptom severity (15,61,98) or dichotomous PTSD diagnosis
(99). Furthermore, the strength of the relationship we discov-
ered between predicted and actual symptom severity based on
the model performance (r = 0.30) was similar to previous MVPA
approaches that have predicted PTSD outcomes using other
seed regions [e.g., r values range from 0.28 (100) to 0.46 (15)].
Thus, similar to other studies investigating brain-based bio-
markers using machine learning (15,61,98,99), hippocampal
rsFC has a moderate effect size in forecasting individual PTSD
psychopathology.

Importantly, our findings support the recommendation to
explore hippocampal rsFC across the entire brain, rather than
narrowing the focus on a priori selection of its connectivity with
a select number of brain regions or networks. Increasingly,
studies demonstrate the value of studying patterns of voxel-to-
voxel activation in those with PTSD. For instance, Cisler et al.
found that voxel-to-voxel patterns of activation during trauma
memory recall was a better predictor of PTSD diagnosis than
the traditional use of region-of-interest–to–region-of-interest
differences in activation (60), while other research shows that
whole-brain connectivity is a better predictor of PTSD in
Table 2. Top 10% of Model Weights per Region of Interest

Region of Interest Laterality Direction Weight

Cerebellum L Negative 1.39

Cerebellum Crus R Negative 1.37

Amygdala R Positive 1.28

Cerebellum Crus L Negative 1.21

Hippocampus R Negative 1.20

Cerebellum R Negative 1.18

Cerebellar Vermis Midline Negative (L) 1.16

Parahippocampal Gyrus L Positive (R), negative (L) 1.16

Cerebellum Crus R Negative 1.15

dmPFC R Positive 1.09

Heschl’s Gyrus L Positive (L), negative (R) 1.08

Reported regions represent top 10% of regions based on weight. Dire
connectivity) or negative (reduced connectivity). When differential connecti
included in parentheses. Weight is determined by the contribution of that r
a percentage. Expected ranking reflects how stable the ranking of each re
region of interest are displayed here, all voxels contributed to model fit, a
interpretability of model outcome.

dmPFC, dorsomedial prefrontal cortex; L, left; MNI, Montreal Neurologic
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combat veterans than 32 nonimaging markers (e.g., behavior,
clinical symptoms) (101). Similarly, Suo et al. recently demon-
strated that whole-brain connectivity across 268 regions of
interest within the brain was able to significantly predict cross-
sectional PTSD symptom severity in survivors of an earth-
quake (98). In this latter study, connections between the
occipital lobe and cerebellum as well as connections of limbic
regions (including hippocampus) with the occipital lobe and
cerebellum were the primary connections that successfully
predicted PTSD severity (98). Notably, connections between
these brain regions, with exception of the traditional limbic
structures, are rarely studied in the context of PTSD. Finally,
model fits determined by whole-brain resting-state average
amplitude of low-frequency fluctuations have been shown to
be better predictors of PTSD symptom severity than con-
straining the feature selection with a mask encompassing the
bilateral PFCs, amygdalae, and hippocampi (61). Indeed, in
addition to hippocampal connectivity with regions involved in
fear generation (i.e., amygdala) as well intrahippocampal con-
nectivity (including with the parahippocampal gyrus), we also
found that hippocampal cerebellum rsFC contributed greatly to
model fit based on our post hoc review of the top 10% of re-
gions that contributed to model performance. Structural
, % Size, Voxels Expected Ranking

MNI Coordinates

x y z

1140 116.81 214 244 228

2026 116.12 36 270 230

240 114.70 26 0 216

2239 113.39 236 270 228

951 112.82 28 218 212

316 111.33 32 272 246

669 110.50 2 252 26

985 110.24 222 216 222

1668 109.51 28 278 240

1904 107.27 8 52 32

224 106.04 242 54 10

ction indicates whether the connectivity pattern was positive (greater
vity patterns were observed, the laterality of the seed hippocampus is
egion divided by the total contribution of all regions and displayed as
gion is across folds. Although only the top 10% of model weights per
nd weights were averaged by brain region in a post hoc fashion for

al Institute; R, right.

ebruary 2022; 7:139–149 www.sobp.org/BPCNNI
Milwaukee from ClinicalKey.com by Elsevier on July 16, 
. Copyright ©2022. Elsevier Inc. All rights reserved.

http://www.sobp.org/BPCNNI


Table 3. Post Hoc Hierarchical Linear Regression (N = 98)

Variable

Actual CAPS-5 Scores at 6 Months

B SE b t p Value

Step 1

Intercept 12.03 1.11 – 10.86 ,.001a

Target CAPS-5 Based on Model Prediction 0.81 0.23 0.34 3.51 .001b

Step 2

Intercept 10.59 1.41 – 7.53 .000

Target CAPS-5 Based on Model Prediction 0.59 0.20 0.25 3.02 .003b

Gender 2.61 1.98 0.11 1.32 .192

Age 0.05 0.10 0.05 0.55 .586

Time since injury at baseline 2.35 5.56 0.04 0.42 .674

Time since injury at 6 months 22.45 2.22 20.09 21.10 .273

PCL-5 at baseline 0.08 0.06 0.12 1.26 .212

DASS-21 Depression at 6 months 0.10 0.20 0.08 0.50 .621

DASS-21 Anxiety at 6 months 0.69 0.23 0.48 2.97 .004b

DASS-21 Stress at 6 months 20.01 0.20 20.01 20.05 .957

CAPS-5, Clinician-Administered PTSD Scale for DSM-5; DASS-21, Depression Anxiety Stress Scales; PCL-5, PTSD Checklist for DSM-5.
ap , .001.
bp , .01.
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abnormalities of the cerebellum, a region traditionally associ-
ated with motor coordination and movement-related learning
(102), have recently been indicated as a risk factor for common
cognitive and affective disorders across categorial diagnoses
(103), and recent research highlights that corticocerebellum
circuitry may be important for integration and coordination of
affective functioning that is related to psychiatric illness (104).
Taken together, this suggests a need for revisiting the tradi-
tional view of PTSD as a disorder specific to frontolimbic ab-
errations (105).

The present findings have important treatment implications.
First, our study assessed hippocampal rsFC within weeks of
trauma exposure as a predictor of severity of symptoms
months later. This research demonstrates that early screening
for risk for PTSD diagnosis may benefit by examining neuro-
biological features such as hippocampal rsFC early in disease
progression. Second, unlike other studies, we explored the
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prediction of PTSD symptoms controlling for general depres-
sion, anxiety, and stress severity. Thus, results suggest that
although PTSD is comorbid with depression and anxiety dis-
orders (106), and previous studies have questioned the utility
of hippocampal volume as a unique biomarker of PTSD (49),
PTSD may still be qualified by unique neurobiological features,
such as altered whole-brain hippocampal rsFC. Finally, given
the use of a continuous PTSD measurement, findings
demonstrate that the prediction of continuous PTSD severity
that includes subthreshold presentation remains crucial, as it
also causes clinically significant impairments (107) and repre-
sents a significant subset of trauma-exposed adults (108).

This study is not without limitations. First, although this
sample comprised individuals who experienced varied mech-
anisms of injury, the majority of our sample (67%) included
those who were admitted to the emergency department after a
motor vehicle crash. Thus, findings may not be generalizable to
Figure 2. Significant relationship between actual
and predicted Clinician-Administered PTSD Scale for
DSM-5 (CAPS-5) scores based on the multivariate
pattern analysis algorithm controlling for all cova-
riates (B = 0.59, SE = 0.20, p = .003). rsFC, resting-
state functional connectivity.
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individuals who have developed PTSD resulting from other
trauma types. In addition, the use of a Glasgow Coma Scale
score of .13 during screening means that some individuals
may have had a mild traumatic brain injury. Although this score
suggests that the mild traumatic brain injury is minor (73,74),
future research on the impact of mild traumatic brain injury on
rsFC should be examined. Although our sample is moderately
large for neuroimaging studies and consistent with other ma-
chine learning investigations in PTSD using fMRI data [which
used sample sizes ranging from 40 (109) to 186 (110)], our
sample is considered small (though still acceptable based on
n = 80 cut-off to reduce error below 0.01) for machine learning
approaches that use biomedical data (111). Because the
prognosis of depression was a secondary interest in this study,
we relied on a self-reported measure of depression symptoms
at 6 months through the DASS-21. Thus, it will be helpful to re-
investigate these findings with the use of more robust mea-
sures of depression [e.g., Center for Epidemiologic Studies
Depression Scale Revised (112)]. Finally, although significance
of the model was retained after controlling for univariate con-
founds in post hoc regression, we were unable to adequately
account for multivariate confounding or the effect of a
confound on the pattern of voxels, which is a known limitation
of this analysis.

Despite these limitations, several important conclusions can
be drawn from our findings. First, to our knowledge, this is one
of the few published studies to date that has examined hip-
pocampal rsFC in the acute aftermath of traumatic injury as a
prospective predictor of PTSD symptom development and
using a large sample size [previous accounts have used
samples of n , 25 (46,55) or reported preliminary data in
conference proceedings (54)]. In addition, this is the only study
to our knowledge that uses a multivariate, machine learning
analytic approach to the question of hippocampal rsFC and
PTSD prediction. Results provide further rationale for not
restricting the study of the biological underpinnings of PTSD to
limbic structures. Given the multitudinous role of the hippo-
campus in both memory formation and fear regulation, in
addition to the constellation of PTSD symptoms spanning
domains of memory alterations and altered arousal, results
support the conclusion that hippocampal distributed connec-
tivity across the brain may be consequential for understanding
PTSD prognosis in trauma survivors.
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