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Abstract
Due to its heterogeneity, the prediction of posttraumatic stress disorder
(PTSD) development after traumtic injury is difficult. Recent machine learn-
ing approaches have yielded insight into predicting PTSD symptom trajectories.
Using data collectedwithin 1month of traumatic injury,we applied eXtremeGra-
dient Boosting (XGB) to classify admitted and discharged patients (hospitalized,
n= 192; nonhospitalized, n= 214), recruited fromaLevel 1 trauma center, accord-
ing to PTSD symptom trajectories. Trajectories were identified using latent class
mixedmodels on PCL-5 scores collected at baseline, 1–3months posttrauma, and
6 months posttrauma. In both samples, nonremitting, remitting, and resilient
PTSD symptom trajectories were identified. In the admitted patient sample,
a unique delayed trajectory emerged. Machine learning classifiers (i.e., XGB)
were developed and tested on the admitted patient sample and externally vali-
dated on the discharged sample with biological and clinical self-report baseline
variables as predictors. For external validation sets, prediction was fair for non-
remitting versus other trajectories, areas under the curve (AUC = .70); good for
nonremitting versus resilient trajectories, AUCs = .73–.76; and prediction failed
for nonremitting versus remitting trajectories, AUCs = .46–.48. However, poor
precision (< .57) across all models suggests limited generalizability of nonremit-
ting symptom trajectory prediction from admitted to discharged patient samples.
Consistency in symptom trajectory identification across samples supports prior
studies on the stability of PTSD symptom trajectories following trauma exposure;
however, continued work and replication with larger samples are warranted
to understand overlapping and unique predictive features of PTSD in different
traumatic injury populations.

1656 © 2022 International Society for Traumatic Stress Studies. wileyonlinelibrary.com/journal/jts J. Trauma. Stress. 2022;35:1656–1671.
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Each year, over 30,000,000 people are treated for traumatic
injuries in hospital emergency departments (EDs) in the
United States (Cairns et al., 2018). Despite these high injury
volumes, relatively little is known about which factors in
the acute period following traumatic injury confer risk or
resilience for negative long-term psychological outcomes
(Martino et al., 2020). Posttraumatic stress disorder (PTSD)
is one of the most common long-term psychological out-
comes of trauma exposure, with 10%–40% of survivors
developing PTSD (Watkins et al., 2018). Although empir-
ically supported interventions that are provided early after
trauma exposure significantly reduce the risk of PTSD
development (Watkins et al., 2018), there are currently no
validated methods of predicting which individuals have
the highest risk.
One barrier to PTSD risk prediction is the inherent het-

erogeneity of the disorder. Heterogeneity exists in both the
symptoms that occur in individuals and in the trajectories
of symptoms that manifest over time (Galatzer-Levy et al.,
2018). Through the use of machine learning techniques,
at least three symptom trajectories have been consistently
identified across several trauma samples: chronic, also
referred to as nonremitting; recovery, also called remit-
ting; and resilient (Galatzer-Levy et al., 2018). The chronic
symptom trajectory consists of clinically elevated or signif-
icant symptoms that begin shortly after trauma exposure
and persist over time. The recovery or remitting trajectory
consists of early clinically significant symptoms that return
to baseline after a short period. Finally, the resilient tra-
jectory consists of low or no symptom presentation after
trauma exposure, with symptoms that never reach a clini-
cal threshold over time. With accurate and reliable factors
differentiating nonremitting individuals, targeted thera-
peutic interventions could be more efficiently delivered
to those at greatest risk (Schultebraucks & Galatzer-Levy,
2019).
Prior work utilizing machine learning approaches to

identify and predict PTSD symptom trajectories have
demonstrated promising results. For example, in a sample
of patients who had been discharged from the ED follow-
ing traumatic injury, Galatzer-Levy et al. (2017) compared
the predictive utility of a combination of biological, clini-
cal, and self-reported variables in differentiating nonremit-
ting and remitting symptom trajectories (Galatzer-Levy
et al., 2017). The results demonstrated robust prediction
of trajectories, especially when biological and clinical vari-
ables were used; however, this approach was not validated
in an independent sample. More recently, in discharged
(Schultebraucks et al., 2020) and admitted traumatic injury
patient samples (Schultebraucks et al., 2021), predictive
models using data routinely collected in the ED following
injury have shown robust performance. In both studies, the
discriminative accuracy of nonremitting versus all other
trajectories was excellent and was validated in a second

sample (Schultebraucks et al., 2020, 2021). Despite the
promise of PTSD trajectory prediction, there is no con-
sensus regarding the specific variables that are routinely
predictive, as there are differences in the variables included
in the analysis and timing of data collection after trau-
matic events. Still, a closer review of this work suggests
some consistency with regard to predictors, including,
but not limited to, prior trauma history, current PTSD
symptoms, age, gender, cortisol levels, pain, and injury
severity (Galatzer-Levy et al., 2014, 2017; Karstoft et al.,
2015; Schultebraucks et al., 2020, 2021).
The current study offers a unique demonstration of

external validation in this line of PTSD trajectory predic-
tion and extends prior work in important ways. First, to
evaluate if accurate prediction would generalize across
samples of traumatically injured adults, we built a predic-
tive model using admitted (i.e., hospitalized) patients and
externally validated its performance in a sample of patients
discharged from the ED (i.e., nonhospitalized). Such an
approach is needed to study predictors of heterogenous
PTSD trajectories that encompass the whole traumatic
injury population. Marrying the findings for admitted
versus discharged patients is essential for understanding
whether unique patient characteristics that may influ-
ence respective risk versus recovery exist in either sample.
Furthermore, we included both biological and clinical self-
report measures related to PTSD risk in the predictive
models. Although biological predictors are intrinsically
of interest given the known pathophysiology of PTSD
(Sherin & Nemeroff, 2011), self-report measures provide
individual-level experiences crucial to understanding the
heterogeneity of the disorder (Ozer et al., 2003). Thus,
we included serum concentrations of cortisol and the two
primary endocannabinoids: N-arachidonoylethanolamine
(AEA) and 2-arachidonoylglycerol (2-AG). Preclinical
studies and evolving human work support the hypothe-
sis that endocannabinoid signaling is recruited by stress
exposure and influences risk regarding the development
of mood disorders, anxiety disorders, and chronic pain
following traumatic injury (deRoon-Cassini et al., 2020;
Fitzgerald et al., 2021).
Considering these factors, our goal was to more explic-

itly understand if PTSD symptom trajectories and their
predictive factors would generalize across traumatically
injured civilian samples. In the current study, we first
identified trajectories of PTSD symptoms using three
assessment points up to 6 months after traumatic injury in
one admitted sample and one discharged sample recruited
from an urban Level 1 trauma center. Based on consis-
tent trajectory identification in the current literature, we
expected to identify nonremitting, remitting, and resilient
trajectories in both samples. Sample characteristics within
symptom trajectories are also described. In addition, to
build upon the previous work in this field, we utilized
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1658 TOMAS et al.

acute biological and clinical self-report data to build a
predictive model (i.e., extreme gradient boosting; XGB)
to classify PTSD symptom trajectory membership in the
admitted patient sample, then validate classification per-
formance in the discharged patient sample. A machine
learning approach was taken, as this method has demon-
strated promising predictive utility in prior studies, and
the results of the current study could be benchmarked
against previous work. Given the variability of predic-
tor sets in the literature, we assumed an exploratory
approach to identifying key predictors in the current
study.

METHOD

Participants and procedure

Study on Trauma and Resilience (STAR 1.0;
Sample A)

The first sample was from a longitudinal study aimed
at using biospecimens, genetics, clinical data, and self-
report measures to identify posttrauma risk factors for
PTSD development in adults (Fitzgerald et al., 2021;
Geier et al., 2019; Weis et al., 2022). Enrolled participants
were admitted to the hospital after a traumatic injury
(70.3% nonassaultive, 29.6% assaultive). Participants com-
pleted three study visits: in-hospital (Time 1 [T1]; M = 2.5
days, range: 0–10 days) and 1 month (Time 2 [T2]; M =

42.28 days, range: 32–73 days) and 6months postinjury (T3;
M = 192.2 days, range: 156–255 days). A total of 278 partic-
ipants completed T1, 78 completed T2, and 174 completed
T3; it is important to note that the T2 assessmentwas added
midway through study recruitment.

Imaging Study on Trauma and Resilience
(iSTAR; Sample B)

The second sample was derived from another large lon-
gitudinal study, independent from Sample A, that was
designed to identify acute posttrauma risk factors for
PTSD development in adults using biospecimen, self-
report measures, cognitive and behavioral assessments,
and neuroimaging (i.e., Bird et al., 2021; Webb, Weis, Hug-
gins, Fitzgerald, et al., 2021; Webb, Weis, Huggins, Parisi,
et al., 2021; Weis et al., 2021, 2022). Enrolled participants
were recruited after being discharged from the ED after
a single-incident traumatic injury (86.0% nonassaultive,
14.0% assaultive trauma) and completed seven study vis-
its. However, the current study utilized only the first three
time points: 2–3 weeks (T1; M = 16.3, range: 3–30 days),
3 months (T2;M = 95.6, range: 72–147 days), and 6 months

postinjury (T3; M = 183.7, range: 147–240 days). In total,
245 participants completed T1, 214 completed T2, and 227
completed T3.
Both sampleswere from the same general pool of trauma

patients treated at the same urban Level 1 trauma cen-
ter; however, the samples are independent of one another
in that they were recruited at nonoverlapping time inter-
vals using different inclusion and exclusion criteria. See
Table 1 for sample characteristics and Supplementary
Table S1 for full inclusion criteria, exclusion criteria, and
recruitment attrition details for both samples. Both stud-
ies were approved by the Medical College of Wisconsin
Institutional Review Board.
Thirty-three clinical self-report and biological variables

shown to be relevant to PTSD prediction were col-
lected at baseline and considered for prediction across
both samples (see Supplementary Table S2 for a descrip-
tion of all variables). Predictor values and labels were
recoded for consistency between samples. Participants
with greater than 30% missing data for baseline vari-
ables were excluded from the analyses (Sample A: n =

0, Sample B: n =4). Next, two variables with more than
30% missing data, due to data collection added mid-
study, were dropped (i.e., smoking status and the Injured
Trauma Survivor Screen score). Predictive mean match-
ing of remaining missing data was done after trajectory
identification and before trajectory prediction. The T1 vari-
ables retained for analysis are described in the Measures
section.

Measures

Demographic characteristics

Participants self-reported their age, sex, race, highest edu-
cation level completed, employment status (“Are you
currently employed or in school?” Yes / No), insurance
status (insured / not insured), and home address. Par-
ticipant address was geocoded and used to derive area
deprivation index (ADI) rankings from publicly available
data maintained by the University of Wisconsin School of
Medicine and Public Health (Kind & Buckingham, 2018).
Census block group rankings were derived from the 2014–
2018National American Community Survey (Singh, 2003).
National ADI rankings are percentile scores representing
17 variables with scores ranging from 0 (most advantaged)
to 100 (most disadvantaged; Singh, 2003).

Biological characteristics

Heart rate (HR), blood pressure (BP), height (m), and
weight (kg) were measured. Body mass index (BMI) was
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MACHINE LEARNING FOR PTSD TRAJECTORY PREDICTION 1659

TABLE 1 Sample characteristics

Sample A (n = 192) Sample B (n = 214)
Variable M SD n % M SD n % p
Age (years) 42.17 33.75 10.71 < .001
Gender < .001
Male 136 70.9 96 44.8
Female 56 29.1 118 55.1

Race < .001
American Indian or Alaska Native < 5.0a

Asian < 5.0a

Black or African American 82 42.7 134 62.6
White 92 47.9 51 23.8
More than one 16 8.3 25 11.6

Injury type < .001
Assaultive 57 29.6 32 14.0
Nonassaultive 135 70.3 182 86.0

T1 ISSb 10.30 6.02 0.89 2.31 < .001
Days since injury at T1b 2.55 1.69 17.62 5.94 < .001
PCL-5 score
T1b 18.91 17.33 28.22 18.79 < .001
T2c 20.00 18.74 25.67 18.43 .016
T3d 20.40 20.68 21.80 19.70 .480

Note: PCL-5, PTSD Checklist for DSM-5; ISS, Injury Severity Score; T1, Time1; T2, Time 2; T3, Time 3;
aSmall subsample sizes for select racial groups reported as < 5.0% to ensure participant anonymity.
bSample A: at hospital following injury, Sample B: 2–3 weeks postinjury.
cSample A: 1 month postinjury, Sample B: 3 months postinjury.
d6 months postinjury for both samples.

calculated as kg/m2. In both samples, venous blood was
obtained once at T1. Concentrations of cortisol and the
endocannabinoids (i.e., AEA and 2-AG) were determined
as described previously (Fitzgerald et al., 2021) and are
detailed in the Supplementary Materials. Due to logis-
tical constraints of the study protocols, blood sample
timing could not be standardized butwas recorded. Regres-
sion analysis indicated there was no association in either
sample between blood draw time and cortisol or endo-
cannabinoid levels, (see Supplementary Materials and
Figure S1); therefore, time of blood draw was not included
in further analyses.

Clinical self-report measures

Injury and pain characteristics
Mechanism of injury and Injury Severity Score (ISS; Baker
et al., 1974) were obtained from trauma registrar data in the
ED. Participants reported loss of consciousness (“yes” or
“no”) during their injury, difficulty sleeping since injury
(“yes” or “no”), sleep duration in the last 24 hr (in hr), and
if they had any history of formal psychiatric diagnosis or
treatment (“yes” or “no”). Marijuana use was determined

from a urine drug screen at T1. The Visual Analogue Scale
for Pain (Holdgate et al., 2003) was used to assess physical
pain severity. Participants were asked to rate pain using a
numbered line with labels ranging from 0 (no pain) to 10
(worst possible pain).

Dissociation
The Peritraumatic Dissociation Event Questionnaire
(PDEQ; Marmar et al., 1997) was administered to assess
dissociation symptoms during the injury event. Partic-
ipants were asked to rate each of 10 items on a 5-point
Likert scale, with total scores of 0–50 and higher scores
indicating higher levels of dissociative symptoms. The
PDEQ has been validated and has demonstrated good
psychometric properties (Tichenor et al., 1996). In the
current sample, Cronbach’s alpha values were .90 for
Sample A and .85 for Sample B.

Trauma exposure
Participants completed the Life Events Checklist (LEC;
Gray et al., 2004; Weathers, Blake, et al., 2013), which
assesses the occurrence of 17 major life events one may
have experienced, witnessed, or learned about happening
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1660 TOMAS et al.

to someone close to them. There are numerous validated
ways to score the LEC (Weis et al., 2022), and the cur-
rent study used each of the sum totals of experienced,
witnessed, or learned about events. Cronbach’s alpha for
experienced, witnessed, and learned about scores were .59,
.73, and .80, respectively, in Sample A and .67, .79, and .86
in Sample B.

Depression, anxiety, and stress symptoms
The Depression, Anxiety, and Stress Scale (DASS; P. F.
Lovibond & Lovibond, 1995; S. H. Lovibond & Lovibond,
1995) is a validated 21-item self-report measure consist-
ing of seven items in each of three subscales. Scores are
summedwithin subscales to evaluate symptoms of depres-
sion, anxiety, and stress, respectively, with higher scores
indicating more symptoms. Cronbach’s alpha values for
the Depression, Anxiety, and Stress subscales were .89, .81,
and .85, respectively, in Sample A and .90, .83, and .89 in
Sample B.

PTSD symptoms

To identify PTSD trajectories, symptoms based on diag-
nostic criteria in the Diagnostic and Statistical Manual of
Mental Disorders (DSM-5; American Psychiatric Associa-
tion, 2013) were assessed using the 20-itemPTSDChecklist
forDSM-5 (PCL-5;Weathers, Litz, et al., 2013) across T1, T2,
and T3 within each respective sample. Participants were
asked to rate each item on a scale of 0 (not at all) to 4
(extremely), with total scores ranging from 0–80 and higher
scores indicating more severe symptom levels. Subscale
scores for the four DSM-5 symptom clusters (i.e., intru-
sions, avoidance, negative alterations in cognition and
mood, and alterations in arousal and reactivity) can also
be calculated by summing scores for related items. Pro-
posed clinical thresholds in other traumatic injury samples
suggest a total score of 30 indicates probable PTSD (Geier
et al., 2019). To ensure appropriate trajectory identification,
only participants with PCL-5 data for at least two of the
three assessment points were retained (Sample A: n = 192,
Sample B, n = 214). Symptom cluster scores from the PCL-
5 are reported alongside total severity scores in Table 2,
though only total severity scores were used in the analy-
sis. Cronbach’s alpha values were .92 and .94, respectively,
for Sample A and Sample B.

Data analysis

Adherence to reporting standards was assessed with
a rubric combining published guidelines, satisfying
the Transparent Reporting of a multivariable Pre-

diction model for Individual Prognosis Or Diagnosis
(TRIPOD) statement (see Supplementary Materials
for the checklist; Collins et al., 2015). All code for
statistical analysis is included in the Supplementary
Materials.

PTSD trajectory identification

PTSD symptom (i.e., PCL-5) trajectories were fit sepa-
rately for Sample A and Sample B using latent class
mixed modeling (LCMM) with the lcmm package in R
(Proust-Lima et al., 2017). Per recommended guidelines
(van de Schoot et al., 2017), to determine the best class
fit of one to six classes, multiple criteria were assessed,
including reductions of log-likelihood, Akaike informa-
tion criterion (AIC), Bayesian information criterion (BIC),
sample-adjusted BIC (SABIC), and entropy, as well as the-
oretical interpretability and parsimony. BIC and entropy
metrics were weighted more heavily when selecting the
best solution (Nguena Nguefack et al., 2020; van de
Schoot et al., 2017). For each sample, a split-half cross-
validation method was used to validate class selection
(Galatzer-Levy et al., 2017), wherein each sample was
randomly split in half, LCMM was recalculated, and fit
metrics were reassessed. Linear and quadratic slopes were
compared to determine the best trajectory fit and shape.
Predictor variables were statistically compared between
trajectories within each sample. Continuous variables
were compared using analyses of variance (ANOVAs),
and categorical variables were compared using Fisher’s
exact test. The Holm–Bonferroni method was used to cor-
rect for multiple comparisons (adjusted p < .05; Holm,
1979).

Prediction of PTSD trajectories with baseline
data

Three models were built to predict trajectory membership:
Model 1, which compared nonremitting class membership
versus all other trajectories;Model 2, comparing nonremit-
ting versus resilient classmembership; andModel 3, which
examined nonremitting versus remitting class member-
ship. First, training and test dataset splits from Sample A
were stratified by trajectory to ensure adequate representa-
tion of trajectories between splits. Models were developed
with a training set of T1 data from 75% of Sample A. Model
performance was internally validated using the remaining
25% of data in Sample A and externally validated using the
full Sample B dataset. For eachmodel, we evaluated perfor-
mance using two sets of predictor variables: the full set of
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baseline variables and a subset of features selected through
recursive feature elimination (RFE) during model devel-
opment. RFE is a dimension-reduction technique that
identifies the smallest subset of features that most accu-
rately contribute to classification; thismethod is often used
to protect overfitting in model development when there
is a large set of candidate features (Statnikov et al., 2011).
To determine the best feature subset from the Sample A
training dataset, a 5 x 10-fold cross-validation (i.e., 10 folds,
repeated 5 times) was implemented within the rfe function
in R (Kuhn, 2008).
All data preprocessing was handled separately within

training and test sets to reduce information leakage
between datasets (Kuhn & Johnson, 2013). Missing data
were imputed using predictive mean matching with
20 imputations via the mice package in R (van Buuren
& Groothuis-Oudshoorn, 2011). Convergence of imputa-
tions was ensured by examining the parallel streams of
imputed means and standard deviations. For context, five
of 31 variables in Sample A had more than 10% of data
missing, and none of the 31 variables in Sample B were
missing more than 10% (see Supplementary Figures S2
and S3 for aggregations of missing data plotted using VIM
in R; Kowarik & Templ, 2016). Categorical variables were
dummy-coded using “one-hot encoding”. Finally, base-
line PCL-5 scores were removed as a predictor due to
their role in defining PTSD trajectories. See Supplementary
Figure S4 for correlation heat maps of all study variables of
interest.
We used the xgbLinear method in train from the caret

package in R (Kuhn, 2008) to build an XGB predictive
model. XGBoost is an ensemble method that uses deci-
sion trees and gradient descent optimization to minimize
errors during training (Chen & Guestrin, 2016). During
model development, all numeric variables were centered
and scaled, and variables with near-zero variance were
removed. A random search was implemented for hyper-
parameter selection (Bergstra & Bengio, 2012), and models
with the highest accuracy dictated the final hyperparam-
eter selection. Hyperparameters in xgbLinear include the
number of boosting iterations, L2 regularization (λ), L1 reg-
ularization (α), and learning rate (η; Kuhn, 2008). To tune
parameters during model development, repeated cross-
validation (i.e., 5 x 10-fold) was applied to guard against
overfitting.
Model performance was assessed by examining accu-

racy, precision, recall, F1 score, and area under the curve
(AUC) metrics. Finally, to evaluate variable contributions
more closely in the full predictor set, Shapley additive
explanation (SHAP) values were calculated for each pre-
dictor using the xgboost package in R (Chen & Guestrin,
2016; Lundberg & Lee, 2017). SHAP values evaluate the

rank-order importance of predictors to classification per-
formance while controlling for the influence and order
of all other features in the model (Lundberg & Lee,
2017).

RESULTS

PTSD symptom trajectories

Based on the LCMM fit metrics, a four-class solution for
Sample A and a three-class solution in Sample B were
selected. In both samples, the results of the split-half
cross-validation supported the respective class solution
selected (Supplementary Table S3). See Figure 1 and Sup-
plementary Tables S4 and S5 for the best LCMM solution
plots and fit metrics for each sample; see Supplementary
Figures S5 and S6 for all fitted solutions. Class solutions in
Sample A represent the following qualitative trajectories:
nonremitting, delayed, remitting, and resilient. In Sample
B, the class solutions represent nonremitting, remitting,
and resilient trajectories. The nonremitting, remitting, and
resilient trajectories in both samples were named accord-
ing to their consistencies with trajectories identified in
previous work. In Sample A, the delayed trajectory was
named due to the pattern of subthreshold symptoms at
T1 that exceeded the threshold by T2 and persisted to T3.
For replicability, we report descriptive comparisons of the
nonremitting versus resilient trajectories (all group com-
parisons are shown in Table 2). In general, participants in
the nonremitting trajectory tended to be in amore unstable
socioeconomic position (i.e., unemployed and uninsured)
and to report more clinically significant psychological
symptoms.
In Sample A, when compared to individuals in the

resilient trajectory, those in the nonremitting trajectory
tended to be primarily female; identify as a racial and/or
ethnic minority; and report a lower socioeconomic posi-
tion (i.e., higher Area Deprivation Index [ADI]; Kind &
Buckingham, 2018), higher levels of peritraumatic dissoci-
ation, higher levels of pain, more severe PTSD symptoms
at all three time points, and higher levels of depression,
anxiety, and stress at T1.
In Sample B, the trajectory comparisons were similar.

When compared to participants in the resilient trajectory,
those in the nonremitting trajectory were younger and
more likely to be unemployed; have previously received a
psychiatric diagnosis; have experienced and/or witnessed
more lifetime traumatic events; have experienced higher
levels of peritraumatic dissociation; have had problems
sleeping; report higher PTSD symptoms at all three time
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MACHINE LEARNING FOR PTSD TRAJECTORY PREDICTION 1665

F IGURE 1 Posttraumatic stress disorder (PTSD) trajectories identified using latent class mixed models.
Note: Dashed lines represent PTSD Checklist for DSM-5 (PCL-5) total severity score proposed clinical cutoff (i.e., 30 or higher) for clinically
significant PTSD symptoms. Sample A: nonremitting, n = 20; delayed, n = 29; remitting, n = 28; resilient, n = 115. Sample B: nonremitting, n
= 39; remitting, n = 34; resilient, n = 141.

points; and report higher levels of depression, anxiety, and
stress at T1.

Prediction of symptom trajectories

Model 1: Nonremitting versus all other
trajectories

The RFE results indicated there was no smaller subset of
baseline variables that best contributed to classifying non-
remitting versus all other trajectories; thus, only the results
of the model performance when all variables were consid-
ered are reported, number of rounds= 59, λ= .04,α= .44, η
= 1.44. When all variables were considered for prediction,
performance was good for internal, validation accuracy =
.91, precision = .80, recall = .57, F1 = .66, AUC = .82, and
fair for external validation, accuracy = .75, precision = .39,
recall = .62, F1 = .48, AUC = .70 (Table 3). Performance
interpretations were aided by Safari et al. (2016). The top
10 predictors in order of highest importance were depres-
sion, peritraumatic dissociation, serum2-AG, stress, serum
AEA, prior indirect trauma exposure (i.e., traumatic events
the participant learned about), serum cortisol, race, age,
and diastolic blood pressure (Figure 2).

Model 2: Nonremitting versus resilient

Results of the RFE indicated four baseline variables—
depression, dissociation, stress, systolic blood pressure—
were the smallest set of features contributing to nonremit-
ting versus resilient trajectory membership, number of
rounds= 50, λ= .0001, α= .0001, η= 0.3.When using RFE
variables, performancewas stronger than forModel 1, with
excellent internal validation, accuracy = .93, precision =

.85, recall = .85, F1 = .85, AUC = .90, and fair external vali-
dation, accuracy= .74, precision= .45, recall= .70, F1= .54,
AUC = .73 (Table 3). When all variables were considered
for prediction, model performance was, again, improved
compared to Model 1, number of rounds = 29, λ = .00008,
α= .0001, η= 1.96. Performance was good for internal val-
idation, accuracy = .90, precision = .83, recall = .71, F1 =
.76, AUC = .83, and fair for external validation, accuracy
= .81, precision = .57, recall = .67, F1 = .62, AUC = .76
(Table 3). The top 10 predictors in order of highest variable
importance were depression, stress, peritraumatic dissoci-
ation, systolic blood pressure, education, prior witnessed
traumatic events, age, prior indirect trauma exposure (i.e.,
traumatic events the participant learned about ), race, and
serum 2-AG (Figure 2).
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1666 TOMAS et al.

TABLE 3 Extreme gradient boosting model performance

Variable and
validation Accuracy Precision Recall F1 score AUC

AUC 95%
CIa

Model 1: Nonremitting vs. all other trajectories
All variables
Internal .91 .80 .57 .66 .77 [.57, .92]
External .75 .39 .62 .48 .70 [.62, .78]

Model 2: Nonremitting vs. resilient
RFE variables
Internal .93 .85 .85 .85 .90 [.74, 1.0]
External .74 .45 .70 .54 .73 [.65, .80]

All variables
Internal .90 .83 .71 .76 .83 [.64, 1.0]
External .81 .57 .67 .62 .76 [.68, .84]

Model 3: Nonremitting vs. remitting
RFE variables
Internal .64 .66 .57 .61 .64 [.35, .85]
External .51 .53 .90 .67 .46 [.41, .51]

All variables
Internal .71 .80 .57 .66 .71 [.50, .92]
External .52 .54 .90 .67 .48 [.41, .54]

Note: RFE, recursive feature elimination; AUC, area under the curve.
aCalculated using 2,000 stratified bootstrap replicates.

F IGURE 2 Shapley additive explanations (SHAP) values for the top 10 predictors in the full set of predictors for each eXtreme Gradient
Boosting model.
Note. Variables are ordered according to classification importance within each respective model=, as calculated from the external validation
dataset (i.e., Sample B). SHAP values represent the log-odds probability of predicting membership in the nonremitting PTSD trajectory. Plots
provide additional context for model interpretation, although poor overall performance across all models should be noted when interpreting
predictor performance. AEA, circulating N-arachidonoylethanolamine; 2-AG, 2-arachidonoylglycerol; BP, blood pressure; HR, heart rate.

Model 3: Nonremitting versus remitting

Results of the RFE indicated eight baseline variables—
stress, depression, race, cortisol, serum 2-AG, education,
serum AEA, and peritraumatic dissociation—were the
smallest set of features contributing to trajectory classifi-

cation, number of rounds = 50, λ = .1, α = .1, η = 0.3.
When using RFE variables, performance was not nearly
as strong as Model 1 or 2, with poor internal validation,
accuracy = .64, precision = .66, recall = .57, F1 = .61, AUC
= .64, and at chance performance (i.e., failed) for external
validation, accuracy = .51, precision = .53, recall = .90, F1
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MACHINE LEARNING FOR PTSD TRAJECTORY PREDICTION 1667

= .67, AUC = .4 (Table 3). When all variables were con-
sidered for prediction, number of rounds = 80, λ = .0004,
α = .01, η = 2.04, performance was fair for internal vali-
dation, accuracy = .71, precision = .80, recall = .57, F1 =
.66, AUC = .71, and failed for external validation, accuracy
= .52, precision = .54, recall = .90, F1 = .67, AUC = .48
(Table 3). The top 10 predictors, in order of importance,
were stress, depression, serum 2-AG, AEA, and cortisol,
education, heart rate, race, peritraumatic dissociation, and
systolic blood pressure (Figure 2).

Overall prediction performance

It is important to note that although Models 1 and 2
demonstrated good performance, particularly in the exter-
nal validation with respect to accuracy, recall, and AUC,
the performance for precision was below chance. Preci-
sion in the context of these models is an important metric,
as it measures the proportion of positive cases classified
as true positives (i.e., nonremitting individuals identified
and classified as nonremitting). Given the smaller sam-
ple sizes of the nonremitting trajectory (Supplementary
Table S6) and that this trajectory is one of the primary
clinical groups of interest, this metric should be weighted
more heavily to evaluatemodel performance (Powers, 2011;
Saito & Rehmsmeier, 2015). Poor precision (i.e., < .57 in
external validation) across all three models suggests over-
all poor generalization fromadmitted to discharged patient
samples in distinguishing nonremitting individuals from
other target groups. For additional context, SHAP value
plots (Figure 2) are provided, although poor overall model
performance should be noted when interpreting predictor
importance.

DISCUSSION

Using samples of admitted and discharged traumatic
injury survivors, we assessed the trajectory of PTSD symp-
toms following injury until approximately 6 months post-
trauma. Three subgroups emerged across both samples,
characterized as nonremitting, remitting, and resilient. In
the admitted patient sample with more severe injuries, we
found evidence of a unique fourth subgroup character-
ized by delayed symptom onset. In addition to mapping
trajectories, we predicted subgroup membership using a
machine learning approach (i.e., XGB) to test the util-
ity of clinical self-report and biological variables collected
shortly after injury (i.e., at T1). Based on internal and exter-
nal validation, the prediction of nonremitting versus all
other trajectories was fair, nonremitting versus resilient

trajectories was good, and nonremitting versus remitting
trajectories failed.
Although the overall statistical approach of the current

study was exploratory, the results provide several impor-
tant implications for the current understanding of PTSD
symptom manifestation following acute injury. With the
use of admitted and discharged patient samples, we were
particularly well situated to discuss the development of
common versus unique trajectories across samples. First,
we found consistency in the presence of nonremitting,
remitting, and resilient trajectories (Galatzer-Levy et al.,
2018), and the proportions of our sample assigned to each
trajectory align closely with other trauma center samples
(deRoon-Cassini et al., 2010; Galatzer-Levy et al., 2017;
Schultebraucks et al., 2020). This consistency suggests that
theremay be uniformity within the traumatic injury popu-
lation,whether admitted or discharged, in the relative rates
and severity of PTSD symptoms.
Despite such resemblances, we also found that a

delayed-onset group was evident in the admitted sam-
ple. Supplemental analyses indicated the unique delayed
trajectory was erased after controlling for ISS when iden-
tifying symptom trajectories (Supplementary Figure S7),
suggesting this trajectory is unique to a severely injured
subset of traumatic injury patients. Furthermore, individ-
uals in the delayed trajectory (58.6%) experienced more
assaultive trauma than those in the remitting (31.0%) or
resilient (19.1%) groups. In general, the admitted sample
included a more severely injured population, with more
reported assaultive trauma; moreover, all participants in
this sample required hospitalization, whereas those in the
discharged sample did not. When patients are hospital-
ized or recovering from assault, it is possible that the
focus on physical stabilization and recovery is paramount
and that only when patients return home are psycholog-
ical symptoms more evident due to the full realization of
how their injuries will affect their well-being, quality of
life, and relationships with others. Additionally, it is pos-
sible that patients are triggered by reminders and begin
to avoid people, places, and situations that remind them
of their traumatic experience only after returning home.
The presence of this unique subgroup in combination with
the generally poor performance of the machine learning
classifiers in the discharged sample suggests limited gen-
eralizability of symptom trajectory prediction across injury
populations. Futureworkwith larger samples is warranted
to refine the understanding of overlapping and unique
features of admitted and discharged injury populations.
In using machine learning to predict trajectory assign-

ment, several patterns of predictor contributions emerged.
It is important to note that standalone predictors cannot
be interpreted, as all predictors contribute to model fit
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simultaneously. In all models, peritraumatic dissociation,
depression, and stress were among the top predictors that
contributed to membership in nonremitting versus other
trajectories. This finding replicates the well-established
association between dissociation and PTSD (Ozer et al.,
2003) and underscores the importance of understanding
reactions and interactions of symptoms in the peritrau-
matic period more broadly. The present results showed
racial and ethnicminority identitywas also a consistent top
predictor. Importantly, this finding does not suggest a vul-
nerability of racial and ethnic minority individuals to poor
posttraumatic outcomes (i.e. PTSD) but rather underscores
the disparities in trauma exposure and injury prevalence
among racial and ethnic groups (Alegría et al., 2013).
We also found that circulating concentrations of endo-
cannabinoids (i.e., AEA and 2-AG) at the time of injury
were predictive of PTSD risk, which confirms prior work
demonstrating high correlations between endocannabi-
noid levels and trauma outcomes (deRoon-Cassini et al.,
2022; Fitzgerald et al., 2021). Although the inclusion of
stress-related biomarkers in this study (i.e., cortisol and
endocannabinoids) is novel, and the findings support the
role that these biomarkers have in prediction, the complex
nature of these variables makes the findings prelimi-
nary. Future work should examine how biological stress
response systems are integrated after trauma exposure,
as these stress-related biomarkers may point to possible
mechanisms for targeted interventions.
Consistent with previous work, performance was good

in classifying nonremitting versus resilient individuals
(Schultebraucks et al., 2020). Identifying nonremitting
individuals early provides a clear target for preventa-
tive therapeutic interventions. Furthermore, the superior
performance of this model compared to Models 1 and
3 suggests the stark contrast in the profiles of nonremit-
ting and resilient individuals early after trauma exposure.
Distinguishing nonremitting from other at-risk subgroups
still presents a challenge, as the classification of nonremit-
ting versus remitting groups in Model 3 failed. Although
this comparison is of great clinical interest, these results
are not surprising given the time needed for symptoms to
diverge. This result highlights the importance of the tim-
ing of variable collection for predictive modeling of PTSD
symptoms.
This study is not without limitations. First, despite the

ability to validate the presence and prediction of PTSD
trajectories in two independent traumatic injury samples,
there were some distinct methodological differences in
data collection between these samples. Although differ-
ences in study designs make it difficult to replicate results,
they afford the opportunity to unveil important differ-
ences regarding the influence of when PTSD symptoms
are assessed for mapping PTSD trajectories. Due to con-

straints of the lcmm package in R, we were unable to
account for class membership uncertainty. We were also
unable to validate latent class selection through likelihood
ratio testing and instead relied on BIC, SABIC, and entropy
metrics to guide model selection. However, uncertainty
modeling and alternative model validation methods are
possible within other statistical programs and should be
considered for future work and replication. The current
study did not account for time of blood draw; however, it is
well-known cortisol, as well as endocannabinoids, follow
established circadian rhythms and are highly suscepti-
ble to acute stress and trauma (Kesner & Lovinger, 2020;
Sin et al., 2017). Though time of day has been similarly
excluded in previous work (Schultebraucks et al., 2020,
2021), the results regarding cortisol and endocannabinoids
in the current study should be interpreted with caution. In
addition, although the PCL-5 has strong concordance with
clinician-derived assessments of PTSD, we relied solely on
a self-report measure of PTSD to determine symptom tra-
jectories. Although the study samples used for validation
were independent, further replication across geographi-
cally diverse admitted and discharged traumatic injury
samples is warranted.
Furthermore, the sample sizes of nonremitting, remit-

ting, and delayed trajectory groups were rather small,
which presents a challenge in implementing and inter-
preting machine learning approaches, as the predicted
outcomes are unbalanced. Interestingly, in their review,
Galatzer-Levy et al. (2018) noted no association between
sample size and the prevalence of trajectories across the lit-
erature, suggesting trajectory identification across trauma
populations is stable. Still, given that the prevalence of
PTSD symptom trajectories will always be unbalanced, the
recruitment of larger sample sizes is necessary to clarify
meaningful patterns of predictive features. In the context
of previous work in this field, though our sample size was
on the lower end of the spectrum, we balanced this limita-
tion against the rigor of bias reduction steps employed in
the currentmethod (i.e., themaintenance of separate train-
ing and test datasets to avoid information leakage, feature
selection, hyperparameter search, and cross-validation;
Vabalas et al., 2019).
In conclusion, this study was unique in its application

of machine learning to evaluate the generalizability of
predicting PTSD trajectories from admitted to discharged
traumatic injury samples. As machine learning applica-
tions are readily employed in medicine and health care for
clinical decision-making (Jayatilake & Ganegoda, 2021), it
is critical to note that using machine learning for PTSD
trajectory prediction is still under development, and there
is no consensus on model specification or feature inclu-
sion. Though machine learning can be a powerful tool
to distill noisy data, given the inherent heterogeneity of
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PTSD symptoms and trauma contexts, as well as the tim-
ing of posttrauma assessment, continued work in this field
with large and diverse samples is necessary for the replica-
tion of results and development of more robust predictive
models.

OPEN PRACTICES STATEMENT

Neither of the studies reported in this article was formally
preregistered. The data have not been made available on a
permanent third-party archive though the script used for
analysis can be found in the supplemental material and
at the corresponding author’s GitHub repository: https://
github.com/carissawtomas/PTSD_trajectory_prediction.
Requests for data or materials can be sent via email to the
lead author at ctomas@mcw.edu.

AUTHOR NOTE

Cecilia Hillard is a member of the Scientific Advisory
Boards of Phytecs, Inc. and Formulate Biosciences and
has an equity interest in Formulate Biosciences; no other
authors have financial disclosures or conflicts of interest to
declare.

ORCID
CarissaW.Tomas https://orcid.org/0000-0002-9199-
8632
TerriA. deRoon-Cassini https://orcid.org/0000-0002-
9485-0625

REFERENCES
Alegría, M., Fortuna, L. R., Lin, J. Y., Norris, F. H., Gao, S.,
Takeuchi, D. T., Jackson, J. S., Shrout, P. E., & Valentine, A.
(2013). Prevalence, risk, and correlates of posttraumatic stress
disorder across ethnic and racial minority groups in the United
States: Medical Care, 51(12), 1114–1123. https://doi.org/10.1097/
MLR.0000000000000007

Baker, S., O’Neill, B., Haddon Jr., W., & Long, W. (1974). The Injury
Severity Score: A method for describing patients with multiple
injuries and evaluating emergency care. Journal of Trauma: Injury,
Infection, and Critical Care, 14(3), 187–196. https://doi.org/10.1097/
2F00005373-197403000-00001

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter
optimization. Journal of Machine Learning Research, 13,
281–305.

Bird, C. M., Webb, E. K., Schramm, A. T., Torres, L., Larson, C.,
& deRoon-Cassini, T. A. (2021). Racial discrimination is associ-
atedwith acute posttraumatic stress symptoms and predicts future
posttraumatic stress disorder symptom severity in trauma-exposed
black adults in the united states. Journal of Traumatic Stress, 34(5),
995–1004. https://doi.org/10.1002/jts.22670

Cairns, C., Kang, K., & Santo, L. (2018). National Hospital
Ambulatory Medical Care Survey: 2018 emergency department
summary tables. https://www.cdc.gov/nchs/data/nhamcs/web_
tables/2018-ed-web-tables-508.pdf

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting
system. Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (pp. 785–794).
https://doi.org/10.1145/2939672.2939785

Collins, G. S., Reitsma, J. B., Altman, D. G., &Moons, K. G. M. (2015).
Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD state-
ment. Annals of Internal Medicine, 162(1), 55–63. https://doi.org/
10.7326/M14-0697

deRoon-Cassini, T. A., Bergner, C. L., Chesney, S. A., Schumann,
N. R., Lee, T. S., Brasel, K. J., & Hillard, C. J. (2022). Circulat-
ing endocannabinoids and genetic polymorphisms as predictors
of posttraumatic stress disorder symptom severity: Heterogeneity
in a community-based cohort. Translational Psychiatry, 12(1), 48.
https://doi.org/10.1038/s41398-022-01808-1

deRoon-Cassini, T. A., Mancini, A. D., Rusch, M. D., & Bonanno,
G. A. (2010). Psychopathology and resilience following traumatic
injury: A latent growth mixture model analysis. Rehabilitation
Psychology, 55(1), 1–11. https://doi.org/10.1037/a0018601

deRoon-Cassini, T. A., Stollenwerk, T. M., Beatka, M., & Hillard,
C. J. (2020). Meet your stress management professionals: The
endocannabinoids. Trends inMolecular Medicine, 26(10), 953–968.
https://doi.org/10.1016/j.molmed.2020.07.002

Fitzgerald, J. M., Chesney, S. A., Lee, T. S., Brasel, K., Larson, C. L.,
Hillard, C. J., & deRoon-Cassini, T. A. (2021). Circulating endo-
cannabinoids and prospective risk for depression in trauma-injury
survivors. Neurobiology of Stress, 14, 100304. https://doi.org/10.
1016/j.ynstr.2021.100304

Galatzer-Levy, I. R., Huang, S. H., & Bonanno, G. A. (2018). Trajec-
tories of resilience and dysfunction following potential trauma: A
review and statistical evaluation. Clinical Psychology Review, 63,
41–55. https://doi.org/10.1016/j.cpr.2018.05.008

Galatzer-Levy, I. R., Karstoft, K.-I., Statnikov, A., & Shalev, A.
Y. (2014). Quantitative forecasting of PTSD from early trauma
responses: A machine learning application. Journal of Psychi-
atric Research, 59, 68–76. https://doi.org/10.1016/j.jpsychires.2014.
08.017

Galatzer-Levy, I. R., Ma, S., Statnikov, A., Yehuda, R., & Shalev, A.
Y. (2017). Utilization of machine learning for prediction of post-
traumatic stress: A re-examination of cortisol in the prediction and
pathways to non-remitting PTSD. Translational Psychiatry, 7(3),
e1070–e1070. https://doi.org/10.1038/tp.2017.38

Geier, T. J., Hunt, J. C., Nelson, L. D., Brasel, K. J., & deRoon-Cassini,
T. A. (2019). Detecting PTSD in a traumatically injured population:
The diagnostic utility of the PTSDChecklist forDSM-5.Depression
and Anxiety, 36(2), 170–178. https://doi.org/10.1002/da.22873

Gray, M. J., Litz, B. T., Hsu, J. L., & Lombardo, T. W. (2004). Psycho-
metric properties of the Life Events Checklist. Assessment, 11(4),
330–341. https://doi.org/10.1177/1073191104269954

Holdgate, A., Asha, S., Craig, J., & Thompson, J. (2003). Comparison
of a verbal numeric rating scale with the Visual Analogue Scale for
the measurement of acute pain. Emergency Medicine Australasia,
15(5–6), 441–446. https://doi.org/10.1046/j.1442-2026.2003.00499.x

Holm, S. (1979). A simple sequentially rejective multiple test proce-
dure. Scandinavian Journal of Statistics, 6(2), 65–70.

 15736598, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jts.22868 by U

niversity O
f W

isconsin, W
iley O

nline L
ibrary on [02/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/carissawtomas/PTSD_trajectory_prediction
https://github.com/carissawtomas/PTSD_trajectory_prediction
mailto:ctomas@mcw.edu
https://orcid.org/0000-0002-9199-8632
https://orcid.org/0000-0002-9199-8632
https://orcid.org/0000-0002-9199-8632
https://orcid.org/0000-0002-9485-0625
https://orcid.org/0000-0002-9485-0625
https://orcid.org/0000-0002-9485-0625
https://doi.org/10.1097/MLR.0000000000000007
https://doi.org/10.1097/MLR.0000000000000007
https://doi.org/10.1097/2F00005373-197403000-00001
https://doi.org/10.1097/2F00005373-197403000-00001
https://doi.org/10.1002/jts.22670
https://www.cdc.gov/nchs/data/nhamcs/web_tables/2018-ed-web-tables-508.pdf
https://www.cdc.gov/nchs/data/nhamcs/web_tables/2018-ed-web-tables-508.pdf
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.7326/M14-0697
https://doi.org/10.7326/M14-0697
https://doi.org/10.1038/s41398-022-01808-1
https://doi.org/10.1037/a0018601
https://doi.org/10.1016/j.molmed.2020.07.002
https://doi.org/10.1016/j.ynstr.2021.100304
https://doi.org/10.1016/j.ynstr.2021.100304
https://doi.org/10.1016/j.cpr.2018.05.008
https://doi.org/10.1016/j.jpsychires.2014.08.017
https://doi.org/10.1016/j.jpsychires.2014.08.017
https://doi.org/10.1038/tp.2017.38
https://doi.org/10.1002/da.22873
https://doi.org/10.1177/1073191104269954
https://doi.org/10.1046/j.1442-2026.2003.00499.x


1670 TOMAS et al.

Jayatilake, S. M. D. A. C., & Ganegoda, G. U. (2021). Involvement
of machine learning tools in healthcare decision-making. Journal
ofHealthcare Engineering, 2021, 1–20. https://doi.org/10.1155/2021/
6679512

Karstoft, K.-I., Galatzer-Levy, I. R., Statnikov, A., Li, Z., Shalev,
A. Y., & members of Jerusalem Trauma Outreach and Preven-
tion Study (J-TOPS) group. (2015). Bridging a translational gap:
Using machine learning to improve the prediction of PTSD. BMC
Psychiatry, 15, 30. https://doi.org/10.1186/s12888-015-0399-8

Kesner, A. J., & Lovinger, D. M. (2020). Cannabinoids, endocannabi-
noids and sleep. Frontiers in Molecular Neuroscience, 13, 125.
https://doi.org/10.3389/fnmol.2020.00125

Kind, A. J. H., & Buckingham, W. R. (2018). Making neighborhood-
disadvantage metrics accessible—The neighborhood atlas. New
England Journal of Medicine, 378(26), 2456–2458. https://doi.org/
10.1056/NEJMp1802313

Kowarik,A., &Templ,M. (2016). Imputationwith theRpackageVIM.
Journal of Statistical Software, 74(7). https://doi.org/10.18637/jss.
v074.i07

Kuhn, M. (2008). Building Predictive Models in R Using the caret
Package. Journal of Statistical Software, 28(5). https://doi.org/10.
18637/jss.v028.i05

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling.
Springer.

Lovibond, P. F., & Lovibond, S. H. (1995). The structure of negative
emotional states: Comparison of the Depression Anxiety Stress
Scales (DASS) with the Beck Depression and Anxiety Inventories.
Behavior Research and Therapy, 33(3), 335–343. https://doi.org/10.
1016/0005-7967(94)00075-u

Lovibond, S. H., & Lovibond, P. F. (1995). Manual for the Depression
Anxiety & Stress Scales (2nd ed.). Psychology Foundation.

Lundberg, S., & Lee, S. (2017). A unified approach to interpreting
model predictions. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems (pp. 4765–4774).
MIT Press.

Marmar, C. R., Weiss, D. S., &Metzler, T. J. (1997). The peritraumatic
dissociative experiences questionnaire. In Assessing psychological
trauma and PTSD. (pp. 412–428). The Guilford Press.

Martino, C., Russo, E., Santonastaso, D. P., Gamberini, E., Bertoni,
S., Padovani, E., Tosatto, L., Ansaloni, L., & Agnoletti, V. (2020).
Long-term outcomes in major trauma patients and correlations
with the acute phase. World Journal of Emergency Surgery, 15(1),
6. https://doi.org/10.1186/s13017-020-0289-3

NguenaNguefack,H. L., Pagé,M.G., Katz, J., Choinière,M., Vanasse,
A., Dorais, M., Samb, O. M., & Lacasse, A. (2020). Trajectory
modelling techniques useful to epidemiological research: A com-
parative narrative review of approaches.Clinical Epidemiology, 12,
1205–1222. https://doi.org/10.2147/CLEP.S265287

Ozer, E. J., Best, S. R., Lipsey, T. L., & Weiss, D. S. (2003). Predictors
of posttraumatic stress disorder and symptoms in adults: A meta-
analysis. Psychological Bulletin, 129(1), 52–73. https://doi.org/10.
1037/0033-2909.129.1.52

Powers, D. (2011). Evaluation: From precision, recall and F-measure
to ROC, informedness, markedness & correlation. Journal of
Machine Learning Technologies, 2(1), 37–63.

Proust-Lima, C., Philipps, V., & Liquet, B. (2017). Estimation of
extended mixed models using latent classes and latent processes:
The R package lcmm. Journal of Statistical Software, 78(2). https://
doi.org/10.18637/jss.v078.i02

Safari, S., Baratloo, A., Elfil, M., & Negida, A. (2016). Evidence-based
emergency medicine; part 5 receiver operating curve and area
under the curve. Emergency, 4(2), 111–113.

Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more
informative than the ROC plot when evaluating binary classifiers
on imbalanced datasets. PLoS ONE, 10(3), e0118432. https://doi.
org/10.1371/journal.pone.0118432

Schultebraucks, K., & Galatzer-Levy, I. R. (2019). Machine learn-
ing for prediction of posttraumatic stress and resilience following
trauma: An overview of basic concepts and recent advances. Jour-
nal of Traumatic Stress, 32(2), 215–225. https://doi.org/10.1002/jts.
22384

Schultebraucks, K., Shalev, A. Y., Michopoulos, V., Grudzen, C.
R., Shin, S.-M., Stevens, J. S., Maples-Keller, J. L., Jovanovic, T.,
Bonanno, G. A., Rothbaum, B. O., Marmar, C. R., Nemeroff, C.
B., Ressler, K. J., & Galatzer-Levy, I. R. (2020). A validated pre-
dictive algorithm of post-traumatic stress course following emer-
gency department admission after a traumatic stressor. Nature
Medicine, 26(7), 1084–1088. https://doi.org/10.1038/s41591-020-
0951-z

Schultebraucks, K., Sijbrandij, M., Galatzer-Levy, I., Mouthaan, J.,
Olff, M., & van Zuiden, M. (2021). Forecasting individual risk
for long-term posttraumatic stress disorder in emergency medical
settings using biomedical data: A machine learning multicenter
cohort study. Neurobiology of Stress, 14, 100297. https://doi.org/10.
1016/j.ynstr.2021.100297

Sherin, J. E., & Nemeroff, C. B. (2011). Post-traumatic stress disorder:
The neurobiological impact of psychological trauma. Dialogues
in Clinical Neuroscience, 13(3), 263–278. https://doi.org/10.31887/
DCNS.2011.13.2/jsherin

Sin, N. L., Ong, A. D., Stawski, R. S., & Almeida, D. M. (2017).
Daily positive events and diurnal cortisol rhythms: Examina-
tion of between-person differences and within-person variation.
Psychoneuroendocrinology, 83, 91–100. https://doi.org/10.1016/j.
psyneuen.2017.06.001

Singh, G. K. (2003). Area deprivation and widening inequalities in
U.S.mortality, 1969–1998.American Journal of PublicHealth, 93(7),
1137–1143. https://doi.org/10.2105/AJPH.93.7.1137

Statnikov, A., Aliferis, C. F., Hardin, D. P., & Guyon, I. (2011). A
gentle introduction to support vector machines in biomedicine: Vol-
ume 1: theory and methods. World Scientific. https://doi.org/10.
1142/7922

Tichenor, V., Marmar, C. R., Weiss, D. S., Metzler, T. J., & Ronfeldt,
H. M. (1996). The relationship of peritraumatic dissociation and
posttraumatic stress: Findings in female Vietnam theater veterans.
Journal of Consulting and Clinical Psychology, 64(5), 1054–1059.
https://doi.org/10.1037/0022-006X.64.5.1054

Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019).
Machine learning algorithm validation with a limited sample size.
PLOS ONE, 14(11), e0224365. https://doi.org/10.1371/journal.pone.
0224365

van Buuren, S., & Groothuis-Oudshoorn, K. (2011). Mice: Multivari-
ate imputation by chained equations in R. Journal of Statistical
Software, 45(3). https://doi.org/10.18637/jss.v045.i03

van de Schoot, R., Sijbrandij, M., Winter, S. D., Depaoli, S., &
Vermunt, J. K. (2017). The GRoLTS-Checklist: Guidelines for
reporting on latent trajectory studies. Structural Equation Model-
ing: AMultidisciplinary Journal, 24(3), 451–467. https://doi.org/10.
1080/10705511.2016.1247646

 15736598, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jts.22868 by U

niversity O
f W

isconsin, W
iley O

nline L
ibrary on [02/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1155/2021/6679512
https://doi.org/10.1155/2021/6679512
https://doi.org/10.1186/s12888-015-0399-8
https://doi.org/10.3389/fnmol.2020.00125
https://doi.org/10.1056/NEJMp1802313
https://doi.org/10.1056/NEJMp1802313
https://doi.org/10.18637/jss.v074.i07
https://doi.org/10.18637/jss.v074.i07
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1016/0005-7967(94)00075-u
https://doi.org/10.1016/0005-7967(94)00075-u
https://doi.org/10.1186/s13017-020-0289-3
https://doi.org/10.2147/CLEP.S265287
https://doi.org/10.1037/0033-2909.129.1.52
https://doi.org/10.1037/0033-2909.129.1.52
https://doi.org/10.18637/jss.v078.i02
https://doi.org/10.18637/jss.v078.i02
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1002/jts.22384
https://doi.org/10.1002/jts.22384
https://doi.org/10.1038/s41591-020-0951-z
https://doi.org/10.1038/s41591-020-0951-z
https://doi.org/10.1016/j.ynstr.2021.100297
https://doi.org/10.1016/j.ynstr.2021.100297
https://doi.org/10.31887/DCNS.2011.13.2/jsherin
https://doi.org/10.31887/DCNS.2011.13.2/jsherin
https://doi.org/10.1016/j.psyneuen.2017.06.001
https://doi.org/10.1016/j.psyneuen.2017.06.001
https://doi.org/10.2105/AJPH.93.7.1137
https://doi.org/10.1142/7922
https://doi.org/10.1142/7922
https://doi.org/10.1037/0022-006X.64.5.1054
https://doi.org/10.1371/journal.pone.0224365
https://doi.org/10.1371/journal.pone.0224365
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1080/10705511.2016.1247646
https://doi.org/10.1080/10705511.2016.1247646


MACHINE LEARNING FOR PTSD TRAJECTORY PREDICTION 1671

Watkins, L. E., Sprang, K. R., & Rothbaum, B. O. (2018). Treating
PTSD: A review of evidence-based psychotherapy interventions.
Frontiers in Behavioral Neuroscience, 12, 258. https://doi.org/10.
3389/fnbeh.2018.00258

Weathers, F. W., Blake, D. D., Schnurr, P. P., Kaloupek, D. G., Marx,
B. P., & Keane, T. M. (2013). The Life Events Checklist for DSM-
5 (LEC-5). https://www.ptsd.va.gov/professional/assessment/te-
measures/life_events_checklist.asp

Weathers, F. W., Litz, B. T., Keane, T. M., Palmieri, P. A., Marx, B.
P., & Schnurr, P. P. (2013). The PTSD Checklist for DSM-5 (PCL-5).
https://www.ptsd.va.gov/professional/assessment/adult-sr/ptsd-
checklist.asp

Webb, E. K., Weis, C. N., Huggins, A. A., Fitzgerald, J. M., Bennett,
K. P., Bird, C. M., Parisi, E. A., Kallenbach, M., Miskovich, T.,
Krukowski, J., deRoon-Cassini, T. A., & Larson, C. L. (2021).
Neural impact of neighborhood socioeconomic disadvantage in
traumatically injured adults. Neurobiology of Stress, 15, 100385.
https://doi.org/10.1016/j.ynstr.2021.100385

Webb, E. K., Weis, C. N., Huggins, A. A., Parisi, E. A., Bennett,
K. P., Miskovich, T., Krukowski, J., deRoon-Cassini, T. A., &
Larson, C. L. (2021). Neighborhood disadvantage is associated
with stable deficits in neurocognitive functioning in traumatically-
injured adults.Health & Place, 67, 102493. https://doi.org/10.1016/
j.healthplace.2020.102493

Weis, C. N., Huggins, A. A., Miskovich, T. A., Fitzgerald, J. M.,
Bennett, K. P., Krukowski, J. L.,Webb, E.K., deRoon-Cassini, T.A.,
& Larson, C. L. (2021). Acute white matter integrity post-trauma

and prospective posttraumatic stress disorder symptoms. Fron-
tiers in Human Neuroscience, 15, 742198. https://doi.org/10.3389/
fnhum.2021.742198

Weis, C. N., Webb, E. K., Damiano, S., Larson, C. L., & deRoon-
Cassini, T. A. (2022). Scoring the Life Events Checklist: Com-
parison of three scoring methods. Psychological Trauma: Theory,
Research, Practice, and Policy, 14(4), 714–720. https://doi.org/10.
1037/tra0001049

SUPPORT ING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Tomas, C. W., Fitzgerald,
J. M., Bergner, C., Bergner, C., Hillard, C. J.,
Larson, C. L., & deRoon-Cassini, T. A. (2022).
Machine learning prediction of posttraumatic stress
disorder trajectories following traumatic injury:
Identification and validation in two independent
samples. Journal of Traumatic Stress, 35, 1656–1671.
https://doi.org/10.1002/jts.22868

 15736598, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jts.22868 by U

niversity O
f W

isconsin, W
iley O

nline L
ibrary on [02/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.3389/fnbeh.2018.00258
https://doi.org/10.3389/fnbeh.2018.00258
https://www.ptsd.va.gov/professional/assessment/te-measures/life_events_checklist.asp
https://www.ptsd.va.gov/professional/assessment/te-measures/life_events_checklist.asp
https://www.ptsd.va.gov/professional/assessment/adult-sr/ptsd-checklist.asp
https://www.ptsd.va.gov/professional/assessment/adult-sr/ptsd-checklist.asp
https://doi.org/10.1016/j.ynstr.2021.100385
https://doi.org/10.1016/j.healthplace.2020.102493
https://doi.org/10.1016/j.healthplace.2020.102493
https://doi.org/10.3389/fnhum.2021.742198
https://doi.org/10.3389/fnhum.2021.742198
https://doi.org/10.1037/tra0001049
https://doi.org/10.1037/tra0001049
https://doi.org/10.1002/jts.22868

	Machine learning prediction of posttraumatic stress disorder trajectories following traumatic injury: Identification and validation in two independent samples
	Abstract
	METHOD
	Participants and procedure
	Study on Trauma and Resilience (STAR 1.0; Sample A)
	Imaging Study on Trauma and Resilience (iSTAR; Sample B)

	Measures
	Demographic characteristics
	Biological characteristics
	Clinical self-report measures
	PTSD symptoms

	Data analysis
	PTSD trajectory identification
	Prediction of PTSD trajectories with baseline data


	RESULTS
	PTSD symptom trajectories
	Prediction of symptom trajectories
	Model 1: Nonremitting versus all other trajectories
	Model 2: Nonremitting versus resilient
	Model 3: Nonremitting versus remitting
	Overall prediction performance


	DISCUSSION
	OPEN PRACTICES STATEMENT
	AUTHOR NOTE
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


